首页> 外文OA文献 >Continuous Wavelet Transform and Hidden Markov Model Based Target Detection
【2h】

Continuous Wavelet Transform and Hidden Markov Model Based Target Detection

机译:基于连续小波变换和隐马尔可夫模型的目标检测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Standard tracking filters perform target detection process by comparing the sensor output signal with a predefined threshold. However, selecting the detection threshold is of great importance and a wrongly selected threshold causes two major problems. The first problem occurs when the selected threshold is too low which results in increased false alarm rate. The second problem arises when the selected threshold is too high resulting in missed detection. Track-before-detect (TBD) techniques eliminate the need for a detection threshold and provide detecting and tracking targets with lower signal-to-noise ratios than standard methods. Although TBD techniques eliminate the need for detection threshold at sensor’s signal processing stage, they often use tuning thresholds at the output of the filtering stage. This paper presents a Continuous Wavelet Transform (CWT) and Hidden Markov Model (HMM) based target detection method for employing with TBD techniques which does not employ any thresholding.
机译:标准跟踪滤波器通过将传感器输出信号与预定义阈值进行比较来执行目标检测过程。但是,选择检测阈值非常重要,错误选择阈值会引起两个主要问题。当所选阈值太低时会出现第一个问题,这会导致错误警报率增加。当所选阈值过高导致检测丢失时,会出现第二个问题。检测前跟踪(TBD)技术消除了对检测阈值的需求,并为检测和跟踪目标提供了比标准方法更低的信噪比。尽管TBD技术消除了传感器信号处理阶段对检测阈值的需求,但它们经常在滤波阶段的输出端使用调整阈值。本文提出了一种基于连续小波变换(CWT)和隐马尔可夫模型(HMM)的目标检测方法,用于不使用任何阈值的TBD技术。

著录项

  • 作者

    Tuğaç S.; Efe M.;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号