首页> 外文OA文献 >MAP Based Speaker Adaptation in Very Large Vocabulary Speech Recognition of Czech
【2h】

MAP Based Speaker Adaptation in Very Large Vocabulary Speech Recognition of Czech

机译:基于MAP的捷克语超大词汇语音识别中的说话人自适应

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The paper deals with the problem of efficient adaptation of speech recognition systems to individual users. The goal is to achieve better performance in specific applications where one known speaker is expected. In our approach we adopt the MAP (Maximum A Posteriori) method for this purpose. The MAP based formulae for the adaptation of the HMM (Hidden Markov Model) parameters are described. Several alternative versions of this method have been implemented and experimentally verified in two areas, first in the isolated-word recognition (IWR) task and later also in the large vocabulary continuous speech recognition (LVCSR) system, both developed for the Czech language. The results show that the word error rate (WER) can be reduced by more than 20% for a speaker who provides tens of words (in case of IWR) or tens of sentences (in case of LVCSR) for the adaptation. Recently, we have used the described methods in the design of two practical applications: voice dictation to a PC and automatic transcription of radio and TV news.
机译:本文讨论了语音识别系统有效适应单个用户的问题。目的是在期望一位已知扬声器的特定应用中实现更好的性能。为此,我们采用MAP(最大后验概率)方法。描述了适用于HMM(隐马尔可夫模型)参数的基于MAP的公式。该方法的几种替代版本已在两个领域实现并通过实验验证,首先在孤立词识别(IWR)任务中,然后在大词汇量连续语音识别(LVCSR)系统中,这两个都是针对捷克语言开发的。结果表明,对于提供数十个单词(如果使用IWR)或数十个句子(如果使用LVCSR)进行改编的说话者,可以将单词错误率(WER)降低20%以上。最近,我们在两个实际应用程序的设计中使用了所描述的方法:对PC的语音命令和广播和电视新闻的自动转录。

著录项

  • 作者

    Cerva P.; Nouza J.;

  • 作者单位
  • 年度 2004
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号