首页> 外文OA文献 >Coherent photons from a solid-state artificial atom
【2h】

Coherent photons from a solid-state artificial atom

机译:固态人造原子的相干光子

摘要

Single spins confined in semiconductor quantum dots - artificial atoms in the solid-state - are attractive candidates for quantum mechanical bits, the fundamental units and building blocks of a quantum computer. The ability to address quantum dot spins optically allows us to initialise and manipulate the state of the quantum bit. Gaining information on the qubit, for example by reading out its state, not only requires state-selective optical excitation, but also access to the single photons scattered in response by the quantum dot. Further, for a distributed computer architecture where nodes of few quantum bits are interlinked via optical communication channels photonic quantum bits are required to faithfully transmit the quantum information.In this thesis we advocate resonant excitation of quantum dot transitions and collection of the resonance fluorescence to address two outstanding challenges: generating dephasing-free single photons for use as flying quantum bits and single-shot spin readout. To this end we investigate the spectral and first-order coherence properties of quantum dot resonance fluorescence. In particular, we directly observe highly coherent scattering in the low Rabi frequency limit which has remained unexplored for solid-state single photon emitters so far.At the same time, interactions with the semiconductor environment are revealed and quantified through their optical signatures: exciton-phonon coupling, nuclear spin dynamics and local electric field fluctuations signal a departure from the ideal atom-like behaviour.Taking advantage of the laser-like coherence of single phase-locked quantum dot photons in the Heitler regime, we demonstrate near-ideal two-photon quantum interference. This benchmark measurement is a precursor for the photonic entanglement of distant quantum dot spins in a quantum optical network, and the results here predict a high fidelity operation.Finally, moving to tunnel-coupled quantum dot molecules we show that the overlap of carrier wave functions in two closely spaced quantum dots forms new spin-selective optical transitions not available in single quantum dots. Then, the presence or absence of scattered photons reveals the electron spin. Intermittency in the quantum dot resonance fluorescence allowed us, for the first time, to observe spin quantum jumps in real-time.Both achievements - highly coherent photons and spin readout - provide the missing link to attempt creation of a small-scale quantum network now.
机译:局限在半导体量子点(固态的人工原子)中的单自旋是量子机械位,量子计算机的基本单位和构造块的有吸引力的候选者。光学解决量子点自旋的能力使我们能够初始化和操纵量子位的状态。例如通过读出状态来获得量子位上的信息,不仅需要状态选择性的光激发,还需要访问量子点响应散射的单个光子。此外,对于一个分布式的计算机体系结构,其中几个量子比特的节点通过光通信通道互连,需要光子量子比特来忠实地传输量子信息。在本文中,我们主张量子点跃迁的共振激发和共振荧光的收集以解决这一问题。两个突出的挑战:生成无相移的单光子以用作飞行量子位和单发自旋读出。为此,我们研究了量子点共振荧光的光谱和一阶相干特性。特别是,我们直接观察到了在低拉比频率极限下的高度相干散射,到目前为止,对于固态单光子发射器仍未进行过探索。与此同时,通过其光学特征揭示并量化了与半导体环境的相互作用:激子-声子耦合,核自旋动力学和局部电场起伏标志着偏离了理想的类似原子的行为。利用Heitler态中单锁相量子点光子的类似激光的相干性,我们证明了近理想的两光子量子干涉。该基准测量是量子光学网络中远距离量子点自旋的光子纠缠的前兆,并且这里的结果预示着高保真度操作。最后,转向隧道耦合量子点分子,我们证明了载波功能的重叠在两个紧密间隔的量子点中形成的新的自旋选择光学跃迁在单个量子点中不可用。然后,散射光子的存在或不存在揭示了电子自旋。量子点共振荧光的间歇性使我们首次能够实时观察自旋量子跃迁,这两项成就-高相干光子和自旋读出-提供了现在尝试创建小规模量子网络的缺失环节。

著录项

  • 作者

    Matthiesen Clemens;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号