首页> 外文OA文献 >Human Tracking with Particle Filter Based on Locally Adaptive Appearance Model
【2h】

Human Tracking with Particle Filter Based on Locally Adaptive Appearance Model

机译:基于局部自适应外观模型的粒子滤波人体跟踪

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In previous work, we proposed a human tracking algorithm based on the reliable appearance model (RAM). The RAM is a set of discriminative local image descriptors that is selected by a boosting algorithm to identify a target in the initial frame, and is employed as an observation model in a particle filter. As the appearance model of the target in human tracking constantly changes as time passes owing to changes in pose, it is necessary to adaptively update the RAM to improve the tracking accuracy. In this paper, if necessary, an insufficient local image descriptor for robust tracking is updated. In order to classify whether local image descriptors are suitable or not during tracking, a distance histogram corresponding to a local image descriptor is constructed. When the histogram indicates that the local image descriptor is lacking in tracking performance, then it is updated. The experimental results demonstrate that the adaptive appearance model successfully tracks sport players even when their pose often changes.
机译:在先前的工作中,我们提出了一种基于可靠外观模型(RAM)的人工跟踪算法。 RAM是一组具有区别性的局部图像描述符,该组描述符由增强算法选择以识别初始帧中的目标,并在粒子滤波器中用作观察模型。由于随着姿势的变化,随着时间的流逝,人类跟踪中目标的外观模型不断变化,因此有必要自适应地更新RAM以提高跟踪精度。在本文中,如有必要,将更新不足以进行鲁棒跟踪的本地图像描述符。为了在跟踪期间对局部图像描述符是否合适进行分类,构造对应于局部图像描述符的距离直方图。当直方图指示本地图像描述符缺乏跟踪性能时,将对其进行更新。实验结果表明,即使运动姿势经常变化,自适应外观模型也可以成功跟踪运动运动员。

著录项

  • 作者

    Lee Sangeun; Horio Keiichi;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号