首页> 外文OA文献 >Entanglement and quantum gate processes in the one-dimensional quantum harmonic oscillator
【2h】

Entanglement and quantum gate processes in the one-dimensional quantum harmonic oscillator

机译:一维量子谐振子中的纠缠和量子门过程

摘要

Quantum states can contain correlations which are stronger than is possible in classical systems. Quantum information technologies use these correlations, which are known as entanglement, as a resource for implementing novel protocols in a diverse range of fields such as cryptography, teleportation and computing. However, current methods for generating the required entangled states are not necessarily robust against perturbations in the proposed systems. In this thesis, techniques will be developed for robustly generating the entangled states needed for these exciting new technologies. The thesis starts by presenting some basic concepts in quantum information proccessing. In Ch. 2, the numerical methods which will be used to generate solutions for the dynamic systems in this thesis are presented. It is argued that using a GPU-accelerated staggered leapfrog technique provides a very efficient method for propagating the wave function. In Ch. 3, a new method for generating maximally entangled two-qubit states using a pair of interacting particles in a one-dimensional harmonic oscillator is proposed. The robustness of this technique is demonstrated both analytically and numerically for a variety of interaction potentials. When the two qubits are initially in the same state, no entanglement is generated as there is no direct qubit-qubitinteraction. Therefore, for an arbitrary initial state, this process implements a root-of-swap entangling quantum gate. Some possible physical implementations of this proposal for low-dimensional semiconductorsystems are suggested. One of the most commonly used qubits is the spin of an electron. However, in semiconductors, the spin-orbit interaction can couple this qubit to the electron's momentum. In order to incorporate this e ffectinto our numerical simulations, a new discretisation of this interaction is presented in Ch. 4 which is signi ficantly more accurate than traditional methods. This technique is shown to be similar to the standard discretisation for magnetic fields. In Ch. 5, a simple spin-precession model is presented to predict the eff ect of the spin-orbit interaction on the entangling scheme of Ch. 3. It is shown that the root-of-swap quantum gate can be restored by introducing an additional constraint on the system. The robustness of the gate to perturbations in this constraint is demonstrated by presenting numerical solutions using the methods of Ch. 4.
机译:量子态可以包含比经典系统更强的相关性。量子信息技术将这些相关性(称为纠缠)用作在各种领域(例如密码学,远距传输和计算)中实现新颖协议的资源。然而,用于产生所需的纠缠态的当前方法不一定对所提出的系统中的扰动具有鲁棒性。在本文中,将开发一些技术来健壮地生成这些令人兴奋的新技术所需的纠缠态。本文首先介绍了量子信息处理中的一些基本概念。在Ch。参照图2,提出了将用于产生动力学系统的解决方案的数值方法。有人认为,使用GPU加速的交错式跳越技术可提供一种非常有效的传播波函数的方法。在Ch。参照图3,提出了一种在一维谐波振荡器中利用一对相互作用的粒子产生最大纠缠二量子位态的新方法。通过分析和数值分析,证明了该技术对于各种相互作用电位的鲁棒性。当两个量子位最初处于相同状态时,因为没有直接的量子位-量子位交互,所以不会产生纠缠。因此,对于任意的初始状态,此过程将实现交换根纠缠的量子门。对于低维半导体系统,建议了该建议的一些可能的物理实现。最常用的量子位之一是电子的自旋。但是,在半导体中,自旋轨道相互作用会将这个量子位耦合到电子的动量上。为了将这种影响纳入我们的数值模拟中,该交互作用的新离散化在Ch。 4比传统方法准确得多。事实证明,该技术与磁场的标准离散化相似。在Ch。参照图5,提出了一种简单的自旋进动模型,以预测自旋-轨道相互作用对Ch的纠缠方案的影响。 3.显示了可以通过在系统上引入附加约束来恢复交换根的量子门。通过使用Ch方法给出数值解,可以证明门在这种约束下的鲁棒性。 4。

著录项

  • 作者

    Owen Edmund Thomas;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号