首页> 外文OA文献 >Anomalous behavior identification using statistical analysis of large scale user interaction data
【2h】

Anomalous behavior identification using statistical analysis of large scale user interaction data

机译:使用大规模用户交互数据的统计分析来识别异常行为

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Abstract: The challenge of identifying usability problems in interactive applications has been dealt with by companies for decades, but the amount of issues found in production systems illustrates how far we are from a widely usable solution. The integration of statistical analysis of large scale user interaction data into a user centered design process, presented by the authors in an earlier work [1], can significantly improve the chance of identifying usability problems in certain classes of applications. In this article, an expansion of the approach is proposed, leveraging the concept of ‘task’ as defined in the ISO 9241-11 [2] to create the basis for the automatic identification of anomalous interaction behavior. Here, ‘anomalous’ is understood as any statistically significant deviation from the expected interaction behavior, as defined in the implemented information architecture and navigation flow, or from the most often observed interaction pattern. With that, we argue, a relevant new tool to support the process of usability evaluation is created, uncovering interaction patterns not easily identifiable by other means
机译:摘要:数十年来,公司已经解决了在交互式应用程序中识别可用性问题的挑战,但是在生产系统中发现的问题数量说明了我们距离广泛可用的解决方案还有多远。作者在较早的工作中提出的将大规模用户交互数据的统计分析集成到以用户为中心的设计过程中[1],可以显着提高在某些应用程序类别中识别可用性问题的机会。在本文中,提出了一种方法的扩展,它利用了ISO 9241-11 [2]中定义的“任务”的概念,为自动识别异常交互行为奠定了基础。在这里,“异常”应理解为与预期的交互行为(在已实施的信息体系结构和导航流程中定义)或与最常观察到的交互模式有任何统计上的重大偏离。我们认为,以此为基础,创建了一种支持可用性评估过程的相关新工具,从而发现了其他方式难以识别的交互模式

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号