首页> 外文OA文献 >Spectral-spatial classification of hyperspectral imagery with 3D convolutional neural network
【2h】

Spectral-spatial classification of hyperspectral imagery with 3D convolutional neural network

机译:利用3D卷积神经网络对高光谱影像进行光谱空间分类

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Recent research has shown that using spectral?spatial information can considerably improve the performance of hyperspectral image (HSI) classification. HSI data is typically presented in the format of 3D cubes. Thus, 3D spatial filtering naturally offers a simple and effective method for simultaneously extracting the spectral?spatial features within such images. In this paper, a 3D convolutional neural network (3D-CNN) framework is proposed for accurate HSI classification. The proposed method views the HSI cube data altogether without relying on any preprocessing or post-processing, extracting the deep spectral?spatial-combined features effectively. In addition, it requires fewer parameters than other deep learning-based methods. Thus, the model is lighter, less likely to over-fit, and easier to train. For comparison and validation, we test the proposed method along with three other deep learning-based HSI classification methods?namely, stacked autoencoder (SAE), deep brief network (DBN), and 2D-CNN-based methods?on three real-world HSI datasets captured by different sensors. Experimental results demonstrate that our 3D-CNN-based method outperforms these state-of-the-art methods and sets a new record.
机译:最近的研究表明,使用光谱空间信息可以大大提高高光谱图像(HSI)分类的性能。 HSI数据通常以3D多维数据集的格式表示。因此,3D空间滤波自然提供了一种简单有效的方法,可同时提取此类图像中的光谱空间特征。本文提出了一种3D卷积神经网络(3D-CNN)框架,用于准确的HSI分类。所提方法完全不依赖任何预处理或后处理即可查看HSI多维数据集数据,从而有效地提取了深光谱空间组合特征。此外,与其他基于深度学习的方法相比,它所需的参数更少。因此,模型更轻巧,不太可能过度拟合并且更易于训练。为了进行比较和验证,我们在三种现实世界中对提出的方法以及其他三种基于深度学习的HSI分类方法(即堆叠自动编码器(SAE),深度简短网络(DBN)和基于2D-CNN的方法)进行了测试。由不同传感器捕获的HSI数据集。实验结果表明,我们基于3D-CNN的方法优于这些最新方法,并创造了新记录。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号