首页> 外文OA文献 >Modified Mutual Information-based Feature Selection for Intrusion Detection Systems in Decision Tree Learning
【2h】

Modified Mutual Information-based Feature Selection for Intrusion Detection Systems in Decision Tree Learning

机译:决策树学习中基于改进互信息的入侵检测系统特征选择

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

As network-based technologies become omnipresent, intrusion detection and prevention for these systems become increasingly important. This paper proposed a modified mutual information-based feature selection algorithm (MMIFS) for intrusion detection on the KDD Cup 99 dataset. The C4.5 classification method was used with this feature selection method. In comparison with dynamic mutual information feature selection algorithm (DMIFS), we can see that most performance aspects are improved. Furthermore, this paper shows the relationship between performance, efficiency and the number of features selected.
机译:随着基于网络的技术的普及,针对这些系统的入侵检测和预防变得越来越重要。提出了一种改进的基于互信息的特征选择算法(MMIFS),用于KDD Cup 99数据集的入侵检测。 C4.5分类方法与此特征选择方法一起使用。与动态互信息特征选择算法(DMIFS)相比,我们可以看到大多数性能方面都得到了改善。此外,本文显示了性能,效率和所选功能数量之间的关系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号