首页> 外文OA文献 >Bayesian Inference of Manning's n coefficient of aStorm Surge Model: an Ensemble Kalman filtervs. a polynomial chaos-based MCMC
【2h】

Bayesian Inference of Manning's n coefficient of aStorm Surge Model: an Ensemble Kalman filtervs. a polynomial chaos-based MCMC

机译:曼宁n的贝叶斯推断风暴潮模型:集成卡尔曼滤波器与基于多项式混沌的MCMC

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Bayesian Inference of Manning's n coefficient in a Storm SurgeModel Framework: comparison between Kalman lter andpolynomial based methodAdil SiripatanaConventional coastal ocean models solve the shallow water equations, which describethe conservation of mass and momentum when the horizontal length scale ismuch greater than the vertical length scale. In this case vertical pressure gradientsin the momentum equations are nearly hydrostatic. The outputs of coastal oceanmodels are thus sensitive to the bottom stress terms de ned through the formulationof Manning's n coefficients. This thesis considers the Bayesian inference problem ofthe Manning's n coefficient in the context of storm surge based on the coastal oceanADCIRC model.In the first part of the thesis, we apply an ensemble-based Kalman filter, thesingular evolutive interpolated Kalman (SEIK) filter to estimate both a constantManning's n coefficient and a 2-D parameterized Manning's coefficient on one idealand one of more realistic domain using observation system simulation experiments(OSSEs). We study the sensitivity of the system to the ensemble size. we also accessthe benefits from using an ination factor on the filter performance.To study the limitation of the Guassian restricted assumption on the SEIK lter,5we also implemented in the second part of this thesis a Markov Chain Monte Carlo(MCMC) method based on a Generalized Polynomial chaos (gPc) approach for theestimation of the 1-D and 2-D Mannning's n coe cient. The gPc is used to build asurrogate model that imitate the ADCIRC model in order to make the computationalcost of implementing the MCMC with the ADCIRC model reasonable.We evaluate the performance of the MCMC-gPc approach and study its robustnessto di erent OSSEs scenario. we also compare its estimates with those resulting fromSEIK in term of parameter estimates and full distributions. we present a full analysisof the solution of these two methods, of the contexts of their algorithms, and makerecommendation for fully realistic application.
机译:风暴潮模型框架中曼宁n系数的贝叶斯推论:卡尔曼滤波与基于多项式的方法之间的比较阿迪尔·西里帕塔纳(Adil Siripatana)传统的沿海海洋模型求解浅水方程,该方程描述了水平长度尺度远大于垂直长度尺度时的质量和动量守恒。在这种情况下,动量方程中的垂直压力梯度几乎是静水压力。因此,沿海海洋模型的输出对通过Manning的n系数确定的底应力项敏感。本文基于沿海海洋ADCIRC模型,考虑了风暴潮背景下曼宁n系数的贝叶斯推断问题。论文的第一部分,应用基于集合的卡尔曼滤波器,即奇异演化插值卡尔曼滤波器(SEIK),对海宁海域ADCIRC模型进行了研究。使用观测系统仿真实验(OSSE)在一个理想域和一个更现实的域之一上估计常数Manning的n系数和二维参数化Manning的系数。我们研究了系统对集合大小的敏感性。为了研究在SEIK滤波器上的高斯受限假设的局限性,我们研究了使用信息因子对滤波器性能的好处。5在本论文的第二部分中,我们还实现了基于马尔可夫链蒙特卡罗(MCMC)方法。用于估计一维和二维曼宁系数的广义多项式混沌(gPc)方法。 gPc用于构建模拟ADCIRC模型的替代模型,以使用ADCIRC模型实现MCMC的计算成本合理。我们评估了MCMC-gPc方法的性能,并研究了其在不同OSSE场景下的鲁棒性。我们还将参数估计和完整分布方面的估计值与SEIK产生的估计值进行比较。我们对这两种方法的解决方案,其算法的上下文以及对完全实际应用的建议进行了全面的分析。

著录项

  • 作者

    Siripatana Adil;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号