首页> 外文OA文献 >Quasi-Optimal Elimination Trees for 2D Grids with Singularities
【2h】

Quasi-Optimal Elimination Trees for 2D Grids with Singularities

机译:具有奇异点的二维网格的拟最优消除树

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We construct quasi-optimal elimination trees for 2D finite element meshes with singularities.These trees minimize the complexity of the solution of the discrete system. The computational cost estimates of the elimination process model the execution of the multifrontal algorithms in serial and in parallel shared-memory executions. Since the meshes considered are a subspace of all possible mesh partitions, we call these minimizers quasi-optimal.We minimize the cost functionals using dynamic programming. Finding these minimizers is more computationally expensive than solving the original algebraic system. Nevertheless, from the insights provided by the analysis of the dynamic programming minima, we propose a heuristic construction of the elimination trees that has cost O(log(Ne log(Ne)), where N e is the number of elements in the mesh.We show that this heuristic ordering has similar computational cost to the quasi-optimal elimination trees found with dynamic programming and outperforms state-of-the-art alternatives in our numerical experiments.
机译:我们为具有奇异点的二维有限元网格构造了准最优消除树,这些树最小化了离散系统求解的复杂性。消除过程的计算成本估算为串行和并行共享内存执行中的多面算法的执行建模。由于考虑的网格是所有可能的网格分区的子空间,因此我们称这些最小化器为准最优的。我们使用动态规划来最小化成本函数。与求解原始代数系统相比,找到这些最小化器的计算量更大。然而,从对动态规划最小值的分析所提供的见解中,我们提出了一种启发式构造消除树,其代价为O(log(Ne log(Ne)),其中N e是网格中元素的数量。我们证明了这种启发式排序与通过动态规划发现的拟最优消除树具有相似的计算成本,并且在我们的数值实验中优于最新的替代方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号