首页> 外文OA文献 >A Novel Transfer Learning Method Based on Common Space Mapping and Weighted Domain Matching
【2h】

A Novel Transfer Learning Method Based on Common Space Mapping and Weighted Domain Matching

机译:基于公共空间映射和加权域匹配的转移学习新方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, we propose a novel learning framework for the problem of domain transfer learning. We map the data of two domains to one single common space, and learn a classifier in this common space. Then we adapt the common classifier to the two domains by adding two adaptive functions to it respectively. In the common space, the target domain data points are weighted and matched to the target domain in term of distributions. The weighting terms of source domain data points and the target domain classification responses are also regularized by the local reconstruction coefficients. The novel transfer learning framework is evaluated over some benchmark cross-domain data sets, and it outperforms the existing state-of-the-art transfer learning methods.
机译:在本文中,我们针对域转移学习的问题提出了一种新颖的学习框架。我们将两个域的数据映射到一个公共空间,并在该公共空间中学习分类器。然后,通过分别向其添加两个自适应函数,使公共分类器适应两个域。在公共空间中,根据分布对目标域数据点进行加权并与目标域匹配。源域数据点的加权项和目标域分类响应也通过局部重建系数进行了正则化。这种新颖的转移学习框架是通过一些基准跨域数据集进行评估的,其性能优于现有的最新转移学习方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号