首页> 外文OA文献 >Combining Position Weight Matrices and Document-Term Matrix for Efficient Extraction of Associations of Methylated Genes and Diseases from Free Text
【2h】

Combining Position Weight Matrices and Document-Term Matrix for Efficient Extraction of Associations of Methylated Genes and Diseases from Free Text

机译:结合位置权重矩阵和文档项矩阵从自由文本中高效提取甲基化基因与疾病的关联

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Background:In a number of diseases, certain genes are reported to be strongly methylated and thus can serve as diagnostic markers in many cases. Scientific literature in digital form is an important source of information about methylated genes implicated in particular diseases. The large volume of the electronic text makes it difficult and impractical to search for this information manually.Methodology:We developed a novel text mining methodology based on a new concept of position weight matrices (PWMs) for text representation and feature generation. We applied PWMs in conjunction with the document-term matrix to extract with high accuracy associations between methylated genes and diseases from free text. The performance results are based on large manually-classified data. Additionally, we developed a web-tool, DEMGD, which automates extraction of these associations from free text. DEMGD presents the extracted associations in summary tables and full reports in addition to evidence tagging of text with respect to genes, diseases and methylation words. The methodology we developed in this study can be applied to similar association extraction problems from free text.Conclusion:The new methodology developed in this study allows for efficient identification of associations between concepts. Our method applied to methylated genes in different diseases is implemented as a Web-tool, DEMGD, which is freely available at http://www.cbrc.kaust.edu.sa/demgd/. The data is available for online browsing and download. © 2013 Bin Raies et al.
机译:背景:在许多疾病中,据报道某些基因被高度甲基化,因此可以在许多情况下用作诊断标记。数字形式的科学文献是有关与特定疾病有关的甲基化基因的重要信息来源。方法:我们基于位置权重矩阵(PWM)的新概念开发了一种新颖的文本挖掘方法,用于文本表示和特征生成。我们将PWM与文档术语矩阵结合使用,以从自由文本中高精度提取甲基化基因与疾病之间的关联。性能结果基于大量的手动分类数据。此外,我们开发了一个Web工具DEMGD,它可以自动从自由文本中提取这些关联。 DEMGD在摘要表和完整报告中提供了提取的关联,此外还提供了有关基因,疾病和甲基化词的文本证据标签。我们在本研究中开发的方法可以应用于从自由文本中提取相似的关联问题。结论:本研究中开发的新方法可以有效识别概念之间的关联。我们用于不同疾病中甲基化基因的方法是通过Web工具DEMGD实现的,该工具可从http://www.cbrc.kaust.edu.sa/demgd/免费获得。该数据可用于在线浏览和下载。 ©2013 Bin Raies等。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号