首页> 外文OA文献 >Multiscale Modeling of Hydrogen Embrittlement for Multiphase Material
【2h】

Multiscale Modeling of Hydrogen Embrittlement for Multiphase Material

机译:多相材料氢脆的多尺度建模

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

ABSTRACTHydrogen Embrittlement (HE) is a very common failure mechanism induced crackpropagation in materials that are utilized in oil and gas industry structural componentsand equipment. Considering the prediction of HE behavior, which is suggestedin this study, is one technique of monitoring HE of equipment in service. Therefore,multi-scale constitutive models that account for the failure in polycrystalline BodyCentered Cubic (BCC) materials due to hydrogen embrittlement are developed. Thepolycrystalline material is modeled as two-phase materials consisting of a grain interior(GI) phase and a grain boundary (GB) phase. In the rst part of this work, thehydrogen concentration in the GI (Cgi) and the GB (Cgb) as well as the hydrogen distributionin each phase, were calculated and modeled by using kinetic regime-A andC, respectively. In the second part of this work, this dissertation captures the adversee ects of hydrogen concentration, in each phase, in micro/meso and macro-scale modelson the mechanical behavior of steel; e.g. tensile strength and critical porosity. Themodels predict the damage mechanisms and the reduction in the ultimate strengthpro le of a notched, round bar under tension for di erent hydrogen concentrations asobserved in the experimental data available in the literature for steels. Moreover, thestudy outcomes are supported by the experimental data of the Fractography and HEindices investigation. In addition to the aforementioned continuum model, this workemploys the Molecular Dynamics (MD) simulations to provide information regarding45bond formulation and breaking. The MD analyses are conducted for both single grainand polycrystalline BCC iron with di erent amounts of hydrogen and di erent size ofnano-voids. The simulations show that the hydrogen atoms could form the transmissionin materials con guration from BCC to FCC (Face Centered Cubic) and HCP(Hexagonal Close Packed). They also suggest the preferred sites of hydrogen for eachcase. The connections between the results for di erent scales (nano, micro/meso andmacro-scale) were suggested in this dissertation and show good agreements betweenthem. We nally conclude that hydrogen-induced steel fracture and the change offracture mode are caused by the suppression of dislocation emission at crack tip andchanging in the material structure due to accumulation of hydrogen, which is drivenby the stress elds. This causes the brittle fracture to occur as inter-granular in theGB and trans-granular in the GI.
机译:ABSTRACTH氢脆(HE)是一种很常见的失效机制,会导致在石油和天然气行业的结构部件和设备中使用的材料中产生裂纹扩展。考虑到对HE行为的预测,这是本研究中提出的,是一种监视服务中设备HE的技术。因此,建立了多尺度的本构模型,该模型可解决多晶的以体心立方(BCC)材料由于氢脆引起的破坏。将多晶材料建模为由晶粒内部(GI)相和晶界(GB)相组成的两相材料。在这项工作的第一部分中,分别使用动力学方案A和C计算并模拟了GI(Cgi)和GB(Cgb)中的氢浓度以及各相中的氢分布。在本工作的第二部分中,本文从微观/介观模型和宏观模型中捕获了钢的力学行为,研究了每个相中氢浓度的不利影响。例如抗拉强度和临界孔隙率。该模型预测了在不同的氢浓度下,有缺口的圆棒在张力下的破坏机理和极限强度曲线的降低,这在文献中可获得的关于钢的实验数据中可以看出。而且,研究结果得到了Fractography和HEindices研究的实验数据的支持。除了上述连续模型外,这项工作还采用了分子动力学(MD)模拟来提供有关45键配方和断裂的信息。对具有不同量的氢和不同尺寸的纳米空隙的单晶粒和多晶BCC铁进行了MD分析。模拟表明,氢原子可以形成从BCC到FCC(面心立方)和HCP(六角密堆积)的材料配置。他们还提出了每种情况下氢的首选位置。本文提出了不同尺度(纳米尺度,微观尺度/中观尺度和宏观尺度)的结果之间的联系,并表明它们之间的良好一致性。可以得出结论,氢诱导钢的断裂和断裂方式的改变是由于裂纹尖端的位错释放受到抑制以及由于氢的积累而引起的材料结构的变化所引起的,而氢是由应力场驱动的。这导致脆性断裂在GB中以粒间形式发生,而在GI中则以跨颗粒形式发生。

著录项

  • 作者

    Al-Jabr Khalid A.;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号