首页> 外文OA文献 >Optimal Design of the Adaptive Normalized Matched Filter Detector using Regularized Tyler Estimators
【2h】

Optimal Design of the Adaptive Normalized Matched Filter Detector using Regularized Tyler Estimators

机译:使用正则泰勒估计器的自适应归一化匹配滤波器检测器的优化设计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This article addresses improvements on the design of the adaptive normalized matched filter (ANMF) for radar detection. It is well-acknowledged that the estimation of the noise-clutter covariance matrix is a fundamental step in adaptive radar detection. In this paper, we consider regularized estimation methods which force by construction the eigenvalues of the covariance estimates to be greater than a positive regularization parameter ρ. This makes them more suitable for high dimensional problems with a limited number of secondary data samples than traditional sample covariance estimates. The motivation behind this work is to understand the effect and properly set the value of ρthat improves estimate conditioning while maintaining a low estimation bias. More specifically, we consider the design of the ANMF detector for two kinds of regularized estimators, namely the regularized sample covariance matrix (RSCM), the regularized Tyler estimator (RTE). The rationale behind this choice is that the RTE is efficient in mitigating the degradation caused by the presence of impulsive noises while inducing little loss when the noise is Gaussian. Based on asymptotic results brought by recent tools from random matrix theory, we propose a design for the regularization parameter that maximizes the asymptotic detection probability under constant asymptotic false alarm rates. Provided Simulations support the efficiency of the proposed method, illustrating its gain over conventional settings of the regularization parameter.
机译:本文介绍了用于雷达检测的自适应归一化匹配滤波器(ANMF)设计的改进。众所周知,噪声杂波协方差矩阵的估计是自适应雷达检测的基本步骤。在本文中,我们考虑通过构造协方差估计的特征值大于正正则化参数ρ的正则化估计方法。与传统样本协方差估计相比,这使它们更适合于数量有限的辅助数据样本的高维问题。进行这项工作的动机是了解效果并正确设置ρ的值,以改善估计条件,同时保持较低的估计偏差。更具体地说,我们考虑针对两种正则估计器的ANMF检测器的设计,即正则样本协方差矩阵(RSCM),正则泰勒估计器(RTE)。这种选择的基本原理是,当噪声为高斯噪声时,RTE可以有效缓解由脉冲噪声的存在引起的降级,同时几乎不产生损耗。基于随机矩阵理论的最新工具带来的渐近结果,我们提出了一种正则化参数设计,该参数可在恒定渐近虚警率下最大化渐进检测概率。提供的仿真结果支持了该方法的效率,说明了该方法相对于常规化参数的常规设置的增益。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号