首页> 外文OA文献 >Work Function Tuning in Sub-20nm Titanium Nitride (TiN) Metal Gate: Mechanism and Engineering
【2h】

Work Function Tuning in Sub-20nm Titanium Nitride (TiN) Metal Gate: Mechanism and Engineering

机译:20nm以下氮化钛(TiN)金属栅极的功函数调整:机理与工程

摘要

Scaling of transistors (the building blocks of modern information age) provides faster computation at the expense of excessive power dissipation. Thus to address these challenges, high-k/metal gate stack has been introduced in commercially available microprocessors from 2007. Since then titanium nitride (TiN) metal gate’s work function (Wf) tunability with its thickness (thickness increases, work function increases) is a well known phenomenon. Many hypotheses have been made over the years which include but not limited to: trap charge and metal gate nucleation, nitrogen concentration, microstructure agglomeration and global stress, metal oxide formation, and interfacial oxide thickness. However, clear contradictions exist in these assumptions. Also, nearly all these reports skipped a comprehensive approach to explain this complex paradigm. Therefore, in this work we first show a comprehensive physical investigation using transmission electron microcopy/electron energy loss spectroscopy (TEM/EELS), x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS) and secondary ion mass spectroscopy (SIMS) to show replacement of oxygen by nitrogen in the metal/dielectric interface, formation of TiONx, reduction of Ti/N concentration and grain size increment happen with TiN thickness increment and thus may increase the work function. Then, using these finding, we experimentally show 100meV of work function modulation in10nm TiN Metal-oxide-semiconductor capacitor by using low temperature oxygen annealing. A low thermal budget flow (replicating gate-last) shows similar work function boost up. Also, a work function modulation of 250meV has been possible using oxygen annealing and applying no thermal budget. On the other hand, etch-back of TiN layer can decrease the work function. Thus this study quantifies role of various factors in TiN work function tuning; it also reproduces the thickness varied TiN work function modulation in single thickness TiN thus reducing the burden of complex integration and gate stack etch; and finally it shows that in a low thermal budget flow, it is more effective to achieve higher work function.
机译:晶体管的缩放比例(现代信息时代的基础)提供了更快的计算速度,但消耗了过多的功率。因此,为了应对这些挑战,从2007年起在商用微处理器中引入了高k /金属栅叠层。从那时起,氮化钛(TiN)金属栅的功函数(Wf)随厚度变化(厚度增加,功函数增加)的可调谐性就达到了一个众所周知的现象。这些年来做出了许多假设,包括但不限于:陷阱电荷和金属栅成核,氮浓度,微结构团聚和整体应力,金属氧化物的形成以及界面氧化物的厚度。但是,在这些假设中存在明显的矛盾。另外,几乎所有这些报告都没有采用全面的方法来解释这种复杂的范例。因此,在这项工作中,我们首先展示了使用透射电子显微镜/电子能量损失谱仪(TEM / EELS),X射线衍射(XRD),X射线光电子能谱(XPS)和二次离子质谱(SIMS)进行的全面物理研究。 )显示出金属/介电界面中的氮取代了氧气,形成TiONx,Ti / N浓度降低和晶粒尺寸增加随TiN厚度的增加而发生,因此可能会增加功函。然后,利用这些发现,我们通过低温氧退火实验证明在10nm TiN金属氧化物半导体电容器中功函数调制为100meV。低热预算流量(复制后栅极)显示出类似的功函数提升。同样,使用氧退火并且不施加热预算也可能实现250meV的功函数调制。另一方面,TiN层的回蚀会降低功函数。因此,本研究量化了各种因素在TiN工作功能调整中的作用;它还在单个厚度的TiN中再现了厚度变化的TiN功函数调制,从而减轻了复杂集成和栅极堆叠蚀刻的负担。最后表明,在低热预算流量下,实现更高的功函数会更有效。

著录项

  • 作者

    Hasan Mehdi;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号