首页> 外文OA文献 >Global existence and exponential growth for a viscoelastic wave equation with dynamic boundary conditions
【2h】

Global existence and exponential growth for a viscoelastic wave equation with dynamic boundary conditions

机译:具有动态边界条件的粘弹性波动方程的整体存在和指数增长

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The goal of this work is to study a model of the wave equation with dynamic boundary conditions and a viscoelastic term. First, applying the Faedo-Galerkin method combined with the fixed point theorem, we show the existence and uniqueness of a local in time solution. Second, we show that under some restrictions on the initial data, the solution continues to exist globally in time. On the other hand, if the interior source dominates the boundary damping, then the solution is unbounded and grows as an exponential function. In addition, in the absence of the strong damping, then the solution ceases to exist and blows up in finite time.
机译:这项工作的目的是研究具有动态边界条件和粘弹性项的波动方程模型。首先,将Faedo-Galerkin方法与不动点定理相结合,证明了局部时间解的存在性和唯一性。其次,我们表明,在对初始数据有所限制的情况下,该解决方案仍将在全球范围内及时存在。另一方面,如果内部源在边界阻尼中占主导地位,则解是无界的,并以指数函数形式增长。此外,在没有强阻尼的情况下,该解决方案将不复存在并在有限时间内爆炸。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号