首页> 外文OA文献 >MIMO-radar Waveform Covariance Matrices for High SINR and Low Side-lobe Levels
【2h】

MIMO-radar Waveform Covariance Matrices for High SINR and Low Side-lobe Levels

机译:高SINR和低旁瓣电平的MIMO雷达波形协方差矩阵

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

MIMO-radar has better parametric identifiability but compared to phased-array radar it shows loss in signal-to-noise ratio due to non-coherent processing. To exploit the benefits of both MIMO-radar and phased-array two transmit covariance matrices are found. Both of the covariance matrices yield gain in signal-to-interference-plus-noise ratio (SINR) compared to MIMO-radar and have lower side-lobe levels (SLL)'s compared to phased-array and MIMO-radar. Moreover, in contrast to recently introduced phased-MIMO scheme, where each antenna transmit different power, our proposed schemes allows same power transmission from each antenna. The SLL's of the proposed first covariance matrix are higher than the phased-MIMO scheme while the SLL's of the second proposed covariance matrix are lower than the phased-MIMO scheme. The first covariance matrix is generated using an auto-regressive process, which allow us to change the SINR and side lobe levels by changing the auto-regressive parameter, while to generate the second covariance matrix the values of sine function between 0 and $pi$ with the step size of $pi/n_T$ are used to form a positive-semidefinite Toeplitiz matrix, where $n_T$ is the number of transmit antennas. Simulation results validate our analytical results.
机译:MIMO雷达具有更好的参数可识别性,但与相控阵雷达相比,它显示出由于非相干处理而导致的信噪比损失。为了利用MIMO雷达和相控阵的优势,找到了两个发射协方差矩阵。与MIMO雷达相比,这两个协方差矩阵均以信号干扰加噪声比(SINR)产生增益,并且与相控阵和MIMO雷达相比,具有较低的旁瓣电平(SLL)。此外,与最近引入的阶段MIMO方案(每个天线发射不同的功率)相反,我们提出的方案允许从每个天线发射相同的功率。提出的第一协方差矩阵的SLL高于相位MIMO方案,而提出的第二协方差矩阵的SLL低于相位MIMO方案。第一个协方差矩阵是使用自回归过程生成的,该过程允许我们通过更改自回归参数来更改SINR和旁瓣水平,而生成第二个协方差矩阵时,正弦函数的值介于0和$ pi之间步长为$ pi / n_T $的$用于形成正半定数的Toeplitiz矩阵,其中$ n_T $是发射天线的数量。仿真结果验证了我们的分析结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号