首页> 外文OA文献 >Nitride-based Quantum-Confined Structures for Ultraviolet-Visible Optical Devices on Silicon Substrates
【2h】

Nitride-based Quantum-Confined Structures for Ultraviolet-Visible Optical Devices on Silicon Substrates

机译:基于氮化物的量子限制结构,用于硅基板上的紫外线可见光学器件

摘要

III–V nitride quantum-confined structures embedded in nanowires (NWs), also known as quantum-disks-in-nanowires (Qdisks-in-NWs), have recently emerged as a new class of nanoscale materials exhibiting outstanding properties for optoelectronic devices and systems. It is promising for circumventing the technology limitation of existing planar epitaxy devices, which are bounded by the lattice-, crystal-structure-, and thermal- matching conditions. This work presents significant advances in the growth of good quality GaN, InGaN and AlGaN Qdisks-in-NWs based on careful optimization of the growth parameters, coupled with a meticulous layer structure and active region design. The NWs were grown, catalyst-free, using plasma assisted molecular beam epitaxy (PAMBE) on silicon (Si) substrates. A 2-step growth scheme was developed to achieve high areal density, dislocation free and vertically aligned NWs on Ti/Si substrates. Numerical modeling of the NWs structures, using the nextnano3 software, showed reduced polarization fields, and, in the presence of Qdisks, exhibited improved quantum-confinement; thus contributing to high carrier radiative-recombination rates. udAs a result, based on the growth and device structure optimization, the technologically challenging orange and yellow NWs light emitting devices (LEDs) targeting the ‘green-yellow’ gap were demonstrated on scalable, foundry compatible, and low-cost Ti coated Si substrates. The NWs work was also extended to LEDs emitting in the ultraviolet (UV) range with niche applications in environmental cleaning, UV-curing, medicine, and lighting. In this work, we used a Ti (100 nm) interlayer and Qdisks to achieve good quality AlGaN based UV-A (320 - 400 nm) device. To address the issue of UV-absorbing polymer, used in the planarization process, we developed a pendeo-epitaxy technique, for achieving an ultra-thin coalescence of the top p-GaN contact layer, for a self-planarized Qdisks-in-NWs UV-B (280 – 320 nm) LED grown on silicon. This process constitutes a significant advancement in simplifying the UV-B and UV-C fabrication process favoring light extraction. udAddressing the issue of poor white light quality in the conventional blue laser diode (LD) and YAG:Ce3+ technology, a number of applications related investigations was conducted. Notably, the orange and yellow emitting InGaN/GaN Qdisks-in-NWs LEDs were implemented as an “active phosphor” to achieve intensity- and bandwidth-tunability for high color-quality solid-state lighting.
机译:嵌入到纳米线(NWs)中的III–V氮化物量子受限结构,也称为纳米线量子盘(Qdisks-in-NWs),近来已成为一类新型的纳米级材料,对光电器件和半导体具有出色的性能。系统。克服现有的平面外延器件的技术局限性是有前途的,这些器件受到晶格,晶体结构和热匹配条件的限制。这项工作基于精心优化的生长参数,加上精细的层结构和有源区设计,为高质量GaN,InGaN和AlGaN Qdisks-in-NWs的生长提出了重大进展。使用等离子辅助分子束外延(PAMBE)在硅(Si)衬底上生长无催化剂的NW。开发了两步生长方案以在Ti / Si衬底上实现高面密度,无位错和垂直排列的NW。使用nextnano3软件对NWs结构进行数值建模,结果表明极化场减小,并且在存在Qdisk的情况下,量子约束得到了改善。因此有助于高载流子的辐射复合率。因此,基于增长和器件结构的优化,在可扩展,铸造兼容且低成本的Ti涂层Si上论证了具有技术挑战性的橙色和黄色NW发光器件(LED),目标是“绿色-黄色”间隙。基材。 NW的工作还扩展到了在紫外线(UV)范围内发射的LED,并在环境清洁,UV固化,药物和照明领域中有特殊应用。在这项工作中,我们使用了Ti(100 nm)夹层和Qdisk来获得高质量的基于AlGaN的UV-A(320-400 nm)器件。为了解决在平面化工艺中使用的吸收紫外线的聚合物的问题,我们开发了一种外延外延技术,以实现顶层p-GaN接触层的超薄结合,从而实现NWs自平面化Qdisks在硅上生长的UV-B(280 – 320 nm)LED。该工艺在简化有利于光提取的UV-B和UV-C制造工艺方面取得了重大进步。为解决常规蓝色激光二极管(LD)和YAG:Ce3 +技术中白光质量差的问题,进行了许多与应用相关的研究。值得注意的是,发射橙色和黄色的InGaN / GaN Qdisks-in-NWs LED被实现为“有源磷光体”,以实现强度和带宽可调性,以实现高质量的彩色固态照明。

著录项

  • 作者

    Janjua Bilal;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号