首页> 外文OA文献 >Data Assimilation within the Advanced Circulation (ADCIRC) Modeling Framework for Hurricane Storm Surge Forecasting
【2h】

Data Assimilation within the Advanced Circulation (ADCIRC) Modeling Framework for Hurricane Storm Surge Forecasting

机译:飓风风暴潮预报的高级循环(ADCIRC)建模框架内的数据同化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Accurate, real-time forecasting of coastal inundation due to hurricanes and tropical storms is a challenging computational problem requiring high-fidelity forward models of currents and water levels driven by hurricane-force winds. Despite best efforts in computational modeling there will always be uncertainty in storm surge forecasts. In recent years, there has been significant instrumentation located along the coastal United States for the purpose of collecting data—specifically wind, water levels, and wave heights—during these extreme events. This type of data, if available in real time, could be used in a data assimilation framework to improve hurricane storm surge forecasts. In this paper a data assimilation methodology for storm surge forecasting based on the use of ensemble Kalman filters and the advanced circulation (ADCIRC) storm surge model is described. The singular evolutive interpolated Kalman (SEIK) filter has been shown to be effective at producing accurate results for ocean models using small ensemble sizes initialized by an empirical orthogonal function analysis. The SEIK filter is applied to the ADCIRC model to improve storm surge forecasting, particularly in capturing maximum water levels (high water marks) and the timing of the surge. Two test cases of data obtained from hindcast studies of Hurricanes Ike and Katrina are presented. It is shown that a modified SEIK filter with an inflation factor improves the accuracy of coarse-resolution forecasts of storm surge resulting from hurricanes. Furthermore, the SEIK filter requires only modest computational resources to obtain more accurate forecasts of storm surge in a constrained time window where forecasters must interact with emergency responders.
机译:准确,实时地预测飓风和热带风暴造成的沿海淹没是一个具有挑战性的计算问题,需要对飓风产生的水流和水位进行高逼真的正演模型。尽管在计算建模方面进行了最大的努力,但风暴潮预报始终存在不确定性。近年来,在美国沿海地区设有大量仪器,目的是在这些极端事件期间收集数据,特别是风,水位和海浪高度。此类数据(如果实时可用)可用于数据同化框架中,以改善飓风风暴潮的预报。本文介绍了一种基于集合卡尔曼滤波器和高级循环(ADCIRC)风暴潮模型的风暴潮预报数据同化方法。奇异的渐进插值卡尔曼(SEIK)滤波器已被证明可以有效地使用通过经验正交函数分析初始化的小集合为海洋模型产生准确的结果。 SEIK过滤器应用于ADCIRC模型,以改善风暴潮预报,特别是在捕获最大水位(高水位线)和潮汐时机方面。给出了两个从飓风艾克和卡特里娜飓风的后验研究中获得的数据的测试案例。结果表明,改进的带有膨胀因子的SEIK滤波器提高了飓风引起的风暴潮的粗分辨率预测的准确性。此外,SEIK过滤器仅需要适度的计算资源,即可在受约束的时间范围内获得更准确的风暴潮预报,在此时间内预报员必须与应急人员互动。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号