首页> 外文OA文献 >Optical and Micro-Structural Characterization of MBE Grown Indium Gallium Nitride Polar Quantum Dots
【2h】

Optical and Micro-Structural Characterization of MBE Grown Indium Gallium Nitride Polar Quantum Dots

机译:MBE生长的氮化铟镓极性量子点的光学和微结构表征

摘要

Gallium nitride and related materials have ushered in scientific and technological breakthrough for lighting, mass data storage and high power electronic applications. These III-nitride materials have found their niche in blue light emitting diodes and blue laser diodes. Despite the current development, there are still technological problems that still impede the performance of such devices. Three-dimensional nanostructures are proposed to improve the electrical and thermal properties of III-nitride optical devices. This thesis consolidates the characterization results and unveils the unique physical properties of polar indium gallium nitride quantum dots grown by molecular beam epitaxy technique.In this thesis, a theoretical overview of the physical, structural and optical properties of polar III-nitrides quantum dots will be presented. Particular emphasis will be given to properties that distinguish truncated-pyramidal III-nitride quantum dots from other III-V semiconductor based quantum dots. The optical properties of indium gallium nitride quantum dots are mainly dominated by large polarization fields, as well as quantum confinement effects. Hence, the experimental investigations for such quantum dots require performing bandgap calculations taking into account the internal strain fields, polarization fields and confinement effects. The experiments conducted in this investigation involved the transmission electron microscopy and x-ray diffraction as well as photoluminescence spectroscopy.The analysis of the temperature dependence and excitation power dependence of the PL spectra sheds light on the carrier dynamics within the quantum dots, and its underlying wetting layer. A further analysis shows that indium gallium nitride quantum dots through three-dimensional confinements are able to prevent the electronic carriers from getting thermalized into defects which grants III-nitrides quantum dot based light emitting diodes superior thermally induced optical properties compared to other nanostructures. Excitation power dependent PL measurements reveal an increase in the excitonic confinements and hence higher quantum efficiencies compared to lower dimensional nanostructures. Finally it is argued that such characteristics allows quantum dots based InGaN structures to become potentially a strong candidate for high quantum efficiency white solid-state light emitting diodes and ultra-violet/blue laser diode operating at room temperature.
机译:氮化镓及相关材料在照明,海量数据存储和高功率电子应用方面迎来了科学技术突破。这些III族氮化物材料在蓝色发光二极管和蓝色激光二极管中找到了自己的位置。尽管有当前的发展,但是仍然存在技术问题仍然阻碍这种设备的性能。提出了三维纳米结构,以改善III族氮化物光学器件的电学和热学性质。本论文巩固了表征结果,揭示了分子束外延技术生长的极性氮化铟镓量子点的独特物理性质。本文对极性III族氮化物量子点的物理,结构和光学性质进行了理论综述。提出了。将特别强调将截断的金字塔形III族氮化物量子点与其他基于III-V族半导体的量子点区分开的性质。氮化铟镓量子点的光学性质主要由大的偏振场以及量子限制效应决定。因此,对于这种量子点的实验研究需要考虑内部应变场,极化场和约束效应来进行带隙计算。这项研究进行的实验涉及透射电子显微镜,x射线衍射以及光致发光光谱学。对PL光谱的温度依赖性和激发功率依赖性的分析揭示了量子点内的载流子动力学及其潜在基础润湿层。进一步的分析表明,通过三维约束的氮化铟镓量子点能够防止电子载流子热化为缺陷,这使基于III族氮化物量子点的发光二极管具有比其他纳米结构更好的热诱导光学性能。依赖于激发功率的PL测量表明,与低维纳米结构相比,激子约束的增加,因此量子效率更高。最后,有人认为,这样的特性使基于量子点的InGaN结构有可能成为在室温下工作的高量子效率白色固态发光二极管和紫外线/蓝色激光二极管的强大候选者。

著录项

  • 作者

    El Afandy Rami;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号