首页> 外文OA文献 >Minimization of Decision Tree Average Depth for Decision Tables with Many-valued Decisions
【2h】

Minimization of Decision Tree Average Depth for Decision Tables with Many-valued Decisions

机译:具有多值决策的决策表的决策树平均深度的最小化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The paper is devoted to the analysis of greedy algorithms for the minimization of average depth of decision trees for decision tables such that each row is labeled with a set of decisions. The goal is to find one decision from the set of decisions. When we compare with the optimal result obtained from dynamic programming algorithm, we found some greedy algorithms produces results which are close to the optimal result for the minimization of average depth of decision trees.
机译:本文致力于分析贪婪算法,以最小化决策表的决策树的平均深度,以便每一行都标记有一组决策。目标是从一组决策中找到一个决策。当与动态规划算法获得的最佳结果进行比较时,我们发现一些贪婪算法产生的结果与最佳结果相近,以最小化决策树的平均深度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号