首页> 外文OA文献 >Seasonal Short-Term Electricity Demand Forecasting under Tropical Condition using Fuzzy Approach Model
【2h】

Seasonal Short-Term Electricity Demand Forecasting under Tropical Condition using Fuzzy Approach Model

机译:基于模糊方法的热带条件下季节性短期用电需求预测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Concern of this work is analysis and short-term electricity demand forecasting under tropical condition using fuzzy approach. Two different demand models are proposed for dry season and rainy season to forecast a total load demand in Makassar, Indonesia for 24 hours ahead in each season. Based on the typical characteristic of seasonal demand, three inputs (time of load, temperature, and type of day) are used for load model in dry season, and four inputs (time of load, temperature, type of day, and rainfall) for load model in rainy season. Meanwhile, output is estimated load in related seasons. Some forecasting error analyses are applied to models. Under tested cases, both seasonal models have good forecasting results with MAPE values smaller than 2.95%. Estimated demand values when holidays and non-holidays in each season which are relatively close to actual load have confirmed effectiveness of the fuzzy based models.
机译:这项工作的重点是使用模糊方法进行热带条件下的分析和短期电力需求预测。建议在旱季和雨季使用两种不同的需求模型,以预测每个季节提前24小时在印度尼西亚望加锡的总负荷需求。根据季节性需求的典型特征,干旱季节的负荷模型使用三个输入(负荷时间,温度和日类型),干旱季节的负荷使用四个输入(负荷时间,温度,日类型和降雨)。在雨季加载模型。同时,产量是相关季节的估计负荷。一些预测误差分析已应用于模型。在测试的情况下,两个季节模型都具有良好的预测结果,MAPE值小于2.95%。当每个季节的假期和非假日相对接近实际负荷时的估计需求值已经确认了基于模糊模型的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号