首页> 外文OA文献 >Particle filters for state estimation of jump Markov linear systems
【2h】

Particle filters for state estimation of jump Markov linear systems

机译:跳跃马尔可夫线性系统状态估计的粒子滤波器

摘要

Jump Markov linear systems (JMLS) are linear systems whose parameters evolve with time according to a finite state Markov chain. In this paper, our aim is to recursively compute optimal state estimates for this class of systems. We present simulation-based algorithms called particle filters to solve the optimal filtering problem as well as the optimal fixed-lag smoothing problem. Our algorithms combine sequential importance sampling, a selection scheme, and Markov chain Monte Carlo methods. They use several variance reduction methods to make the most of the statistical structure of JMLS. Computer simulations are carried out to evaluate the performance of the proposed algorithms. The problems of on-line deconvolution of impulsive processes and of tracking a maneuvering target are considered. It is shown that our algorithms outperform the current methods.
机译:跳跃马尔可夫线性系统(JMLS)是线性系统,其参数根据有限状态的马尔可夫链随时间变化。在本文中,我们的目标是递归计算此类系统的最佳状态估计。我们提出了基于模拟的算法,称为粒子滤波器,以解决最佳滤波问题以及最佳固定滞后平滑问题。我们的算法结合了顺序重要性抽样,选择方案和马尔可夫链蒙特卡洛方法。他们使用几种方差减少方法来充分利用JMLS的统计结构。进行计算机仿真以评估所提出算法的性能。考虑了脉冲过程的在线反卷积和跟踪机动目标的问题。结果表明,我们的算法优于当前方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号