Increase in applications of varying cross sectional area microchannels in microdevices has provided the need to understandudfluid flow and heat transfer through such flow passages. This study focuses on conjugate heat transfer study through auddiverging microchannel. Three-dimensional numerical simulations are performed using commercially available package.udDiverging microchannels with different geometrical configurations (i.e. varying angle: 1-8°, depth: 86-200 μm, solid-to-udfluid thickness ratio: 1.5-4) are employed for this purpose. Simulations are carried out for varying mass flow rate (3.3 xud10ud–5ud-8.3 x 10ud–5ud kg/s) and heat flux (2.4-9.6 W/cmud2ud) conditions. Heat distribution along the flow direction is studied toudunderstand the effect of wall conduction. Wall conduction number (udMud) varies from 0.006 to 0.024 for the range ofudparameters selected in the study. Wall conduction is observed to be a direct function of depth and solid-to-fluid thicknessudratio, and varies inversely with angle of diverging microchannel. It is observed that the area variation and wall conductionudcontribute separately towards redistribution of the supplied heat flux. This leads to reduced temperature gradients inuddiverging microchannel. The results presented in this work will be useful for designing future microdevices involving heating or cooling
展开▼
机译:微型器件中横截面积变化的微通道的应用的增加提供了对通过这种流动通道的流体流动和热传递的理解的需求。这项研究专注于通过扩散微通道的共轭传热研究。使用市售的包装进行三维数值模拟。 ud分散具有不同几何结构(即,角度变化:1-8°,深度:86-200μm,固液厚度比:1.5-4)的微通道为此目的而雇用。针对变化的质量流率(3.3 x ud10 ud-5 ud-8.3 x 10 ud-5 ud kg / s)和热通量(2.4-9.6 W / cm ud2 ud)条件进行模拟。研究了沿流动方向的热量分布,以了解壁传导的影响。在研究中选择的 ud参数范围内,壁传导数( udM ud)在0.006至0.024之间变化。观察到壁传导是深度和固体-流体厚度比值的直接函数,并且与发散微通道的角度成反比。可以看出,面积变化和壁传导 ud分别对所提供的热通量重新分配。这会导致微通道内的温度梯度降低。这项工作中提出的结果对于设计未来涉及加热或冷却的微型设备很有用
展开▼