首页> 外文OA文献 >Solvatation du thorium par les fluorures en milieu sel fondu à haute température : application au procédé d'extraction réductrice pour le concept MSFR
【2h】

Solvatation du thorium par les fluorures en milieu sel fondu à haute température : application au procédé d'extraction réductrice pour le concept MSFR

机译:氟化物在高温熔融盐介质中对v的溶剂化:在MSFR概念的还原萃取工艺中的应用

摘要

The molten salt fast reactor (MSFR) is one of the six nuclear reactor concepts retained during the Forum GEN IV in 2001. The particularity of this concept is to use a liquid fuel consisting of a molten salt, LiF-ThF₄-UF₄ /UF ₃ (77-19-4 mol%) and to have an integrated spent fuel treatment process. This treatment consists of successive chemical separation steps based on redox and acid-base properties of the elements produced in the reactor by nuclear reactions: soluble and gaseous fission products, metals elements and soluble minor actinides. One of the major steps of the treatment method is a reducing extraction which consists to contact the molten salt and a liquid metal, bismuth, containing the reducing element, lithium. This step allows separating the minor actinides and lanthanides. Minor actinides are reintroduced in the nuclear reactor to be burned while the lanthanides are confined in deep storage.The work in this thesis had two objectives: (i) assess the feasibility of reducing extraction of actinides and lanthanides, a step that had previously only been validated on the basis of thermodynamic calculations and (ii) study the chemistry of molten fluoride salts (and especially the fuel salt) by developing a methodology for the determination of fundamental data such as the activity coefficients in fluorides media, coefficients activities which quantify the solvation properties.To experimentally realize a reducing extraction, the first step is to prepare a metal layer of liquid Bi-Li with predefined composition. An electrolysis technique in molten salt LiCl-LiF at 550°C was chosen to achieve these metal solutions. We have shown that only this molten medium could be used for the manufacture of such metal alloys. Extraction tests were then carried out by contact between LiF-ThF₄ (with UF₄ and NdF ₃ are introduced to simulate respectively the actinides and lanthanides) and Bi-Li at 650°C. The main results show that the extraction of neodymium and uranium was obtained with yields of around 3% and 15% respectively in the best conditions. These values are low compared to previous thermodynamic calculations. Low efficiency of the extraction is due to a simultaneous extraction of thorium in the liquid metal phase which forms intermetallic compounds at the metal/salt interphase and blocks the transfer.Methods have been developed to achieve fundamental data that are lacking in molten fluoride medium, in particularly the solvation properties. Speciation of some metallic cations by fluoride ions with high temperature was particularly studied and calculation of complexation constants by simulated experimental results was done. Carried out for two lanthanides, neodymium and lanthanum, two actinides, thorium and uranium, and also for a transition metal, nickel, this study achieves to calculate the activity coefficients of these elements in different fluoride molten salt. The study of the speciation of thorium was an important step to understand the chemistry of the fuel salt LiF-ThF₄. We were able to calculate the activity coefficient of the fluoride ion in this environment at 650°C.Finally, all of this work allows giving a first estimate of the reactivity of each element of the periodic table (present in the nuclear reactor after operation) at each stage of the treatment of the spent fuel salt.
机译:熔融盐快堆(MSFR)是2001年第四届论坛期间保留的六个核反应堆概念之一。该概念的特殊性是使用由熔融盐LiF-ThF₄-UF₄/UF₃组成的液体燃料(77-19-4 mol%),并具有一体化的乏燃料处理工艺。该处理包括连续的化学分离步骤,这些步骤基于氧化反应和通过核反应在反应器中产生的元素的酸碱性质:可溶性和气态裂变产物,金属元素和可溶性次act系元素。该处理方法的主要步骤之一是还原萃取,该还原萃取包括使熔融盐与包含还原元素锂的液态金属铋接触。该步骤允许分离次act系元素和镧系元素。将次act系元素重新引入核反应堆中,然后将镧系元素限制在深层存储中进行燃烧。本论文的工作有两个目标:(i)评估减少act系元素和镧系元素提取的可行性,这一步骤以前只是在热力学计算的基础上进行了验证,并且(ii)通过开发用于确定基本数据(例如,氟化物介质中的活度系数,量化溶剂化的系数活度)的方法,研究了熔融氟化物盐(尤其是燃料盐)的化学性质为了实验上实现还原萃取,第一步是制备具有预定成分的液态Bi-Li金属层。选择在550°C的熔融盐LiCl-LiF中进行电解的技术,以获得这些金属溶液。我们已经表明,只有这种熔融介质才能用于制造这种金属合金。然后通过在650℃下LiF-ThF 3(用UF 3和NdF 3引入以分别模拟act系元素和镧系元素)和Bi-Li之间的接触进行萃取试验。主要结果表明,在最佳条件下,钕和铀的提取率分别约为3%和15%。与先前的热力学计算相比,这些值较低。萃取效率低是由于在液态金属相中同时萃取了which,该or在金属/盐间相中形成金属间化合物并阻碍了转移。已开发出一些方法来获得熔融氟化物介质中缺乏的基本数据,特别是溶剂化性能。特别研究了高温下氟离子对某些金属阳离子的形态分析,并通过模拟实验结果计算了络合常数。对两种镧,钕和镧,两种act系元素,th和铀,以及过渡金属镍进行了研究,从而计算出这些元素在不同氟化物熔盐中的活度系数。 or的形态研究是了解燃料盐LiF-ThF₄化学的重要步骤。我们能够计算出该环境在650°C下氟离子的活度系数,最后,所有这些工作都可以对元素周期表中每个元素的反应性进行初步估计(运行后存在于核反应堆中)在乏燃料盐处理的每个阶段。

著录项

  • 作者

    Rodrigues Davide;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 fr
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号