首页> 外文OA文献 >Élucidation du rôle de nouveaux acteurs de la biosynthèse de Q8 chez Escherichia coli et caractérisation du complexe protéique de biosynthèse de Q8.
【2h】

Élucidation du rôle de nouveaux acteurs de la biosynthèse de Q8 chez Escherichia coli et caractérisation du complexe protéique de biosynthèse de Q8.

机译:阐明大肠杆菌中Q8生物合成中新成员的作用以及Q8生物合成蛋白复合物的表征。

摘要

Ubiquinone (Q) is a lipophilic compound that plays an important role in electron and proton transport in the respiratory chains of Escherichia coli. Besides this important role in energy production, Q also functions as a membrane soluble antioxidant. The biosynthesis of Q8 requires eight reactions and involves at least nine proteins (UbiA-UbiH and UbiX) in Escherichia coli. Three of these reactions are hydroxylations resulting in the introduction of a hydroxyl group on carbon atoms at position 1, 5 and 6 of the aromatic ring. The C1 and C6 hydroxylation are well characterized whereas the C5 hydroxylation has been proposed to involve UbiB, a protein kinase without any sequence homology with monooxygenase. In this work, by genetic and biochemical methods we provide evidence that VisC which we renamed UbiI, displays sequence homology with monooxygenases and catalyzes the C5 hydroxylation, not UbiB. We have identified two new genes, yqiC and yigP (renammed UbiJ and UbiK) which are required only for Q8 biosynthesis in aerobic conditions. The exact role of the corresponding proteins, renamed UbiJ and UbiK, remains unknown. These proteins are able to interact with other Ubi proteins to be able to produce Q supporting the protein complex hypothesis. Our progress on the characterization of an Ubi-complex regrouping several Ubi proteins suggest that UbiJ and UbiK may fulfill functions related to the Ubi-complex stability. Mutants affected in hydroxylation steps are deficient for Q8 in aerobic conditions but recover a wild type Q8 content when grown in anaerobic conditions. This intriguing observation supports the existence of an alternative hydroxylation system independent from dioxygen which has not been characterized so far. By phylogenetic studies, we have identified a new gene in which the deletion affect the biosynthesis of Q only in anaerobic conditions suggesting a reorganization of Q biosynthesis in these two conditions. Our results has improved our knowledge of the prokaryotic Q biosynthetic pathway through the discovery of new genes involved in this process and through the identification of the molecular function of some proteins.
机译:泛醌(Q)是一种亲脂性化合物,在大肠杆菌呼吸链中的电子和质子运输中起重要作用。除了在能量产生中的重要作用外,Q还起着膜溶性抗氧化剂的作用。 Q8的生物合成需要八个反应,并涉及大肠杆菌中的至少九种蛋白质(UbiA-UbiH和UbiX)。这些反应中的三个是羟基化,导致在芳环的1、5和6位的碳原子上引入羟基。 C1和C6的羟基化作用已被很好地表征,而C5的羟基化作用被认为涉及UbiB,这是一种蛋白激酶,与单加氧酶没有任何序列同源性。在这项工作中,通过遗传和生化方法,我们提供了证据,即我们重命名为UbiI的VisC与单加氧酶显示了序列同源性,并催化C5羟基化,而不是UbiB。我们确定了两个新基因yqiC和yigP(重命名的UbiJ和UbiK),仅在有氧条件下进行Q8生物合成时才需要。相应的蛋白(分别更名为UbiJ和UbiK)的确切作用仍然未知。这些蛋白质能够与其他Ubi蛋白质相互作用,从而产生支持蛋白质复合物假说的Q。我们对几种复合Ubi蛋白进行重组的Ubi复合物的表征研究进展表明,UbiJ和UbiK可能履行与Ubi复合物稳定性相关的功能。受羟基化步骤影响的突变体在好氧条件下缺乏Q8,但在厌氧条件下生长时恢复了野生型Q8含量。这个有趣的观察结果支持存在一个与双氧无关的替代羟基化系统,该系统目前尚未表征。通过系统发育研究,我们已经确定了一个新的基因,其中的缺失仅在厌氧条件下影响Q的生物合成,这表明在这两个条件下Q生物合成的重组。通过发现参与该过程的新基因并鉴定某些蛋白质的分子功能,我们的结果提高了我们对原核Q生物合成途径的认识。

著录项

  • 作者

    Hajj Chehade Mahmoud;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 fr
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号