首页> 外文OA文献 >Simulation bidimensionnelle de l'effet des pièges profonds dans le substrat sur les caractéristiques des transistors a effet de champ en Arséniure de Gallium (GaAs FETs)
【2h】

Simulation bidimensionnelle de l'effet des pièges profonds dans le substrat sur les caractéristiques des transistors a effet de champ en Arséniure de Gallium (GaAs FETs)

机译:衬底中深陷阱对砷化镓场效应晶体管(GaAs FET)特性影响的二维模拟

摘要

In thisthesis, the reduction of the conductance of GaAs FETs by a negative voltage applied to the substrate, termed backgating or sidegating, was numerically modeled to determine which type of traps is responsible of this phenomenon. Drift diffusion Modelling wascarried out for several sets of deep levels in the substrate. It has been observed that deep acceptors are mainly responsible for backgating, independently of the shallow level type in the substrate. In this case, there is no threshold. However, when deep donors are present in the substrate, backgating is again reduced but with a threshold. The presence of a buffer layer between the channel and the semi-insulating substrate also helps reducing backgating.udA two dimensional-hydrodynamic model was carried out to predict the performance of short-gate length power III–V field effect transistors. The model is based on the conservation equations, deduced from the Boltzmann transport equation and solved in their whole form. This model is also well suited to study the effect of substrate deep levels on the device. The results of hydrodynamic model (physical model) were compared to those of the fully distributed model (electrical model), especially, as for high frequency operating. In fact, at high frequencies, the dimensions of the electrodes of microwave transistors such as FETs become comparable to the wavelength, highlighting the parasitic effect of wave propagation. Thus, this effect needs to be accurately evaluated in the device model to assure a reliable design.udIn the electrical model, the device width was then divided into an infinity number of segments, while each segment was considered as a combination of three coupled lines and a conventional FET equivalent circuit.By solving a set of multi-conductor transmission line equations using the Finite-Difference Time-Domain (FDTD) technique, an accurate and efficient transistor modeling approach was proposed.udFurthermore, thetwo dimensional hydrodynamic model had been shown to provide a valuable insight into theoperation devices and confirm in many cases the measurements.Thus,the HDM model was used to study the effect of the gate length and its the recess depth on the recessed gate MESFET and pHEMT. It was found that, the performance of these devices is improuved by shrinking the gate length and deepening the recess. The effect of increasing the delta doped densityon the pHEMT performance was also studied. It is a way to improve the transfer efficiency of electrons from the delta-doped AlGaAs layer to the InGaAs channel. For the deep levels, it was found that deep acceptors improve the transistor performance while deep donors degraded it.
机译:在这篇论文中,通过数值模拟了被施加到衬底上的负电压(称为背栅或侧栅)对GaAs FET的电导率的降低,以确定导致这种现象的陷阱类型。对基板中的几组深层进行了漂移扩散建模。已经观察到,深受主主要负责背胶,而与衬底中的浅能级无关。在这种情况下,没有阈值。然而,当基底中存在深的供体时,再次减少了背照,但是具有阈值。在沟道和半绝缘衬底之间存在缓冲层也有助于减少背胶。 ud进行了二维流体力学模型来预测短栅极长度功率III–V场效应晶体管的性能。该模型基于从Boltzmann输运方程推导并整体求解的守恒方程。该模型也非常适合研究衬底深水平对器件的影响。将流体动力学模型(物理模型)的结果与全分布模型(电气模型)的结果进行了比较,尤其是在高频操作方面。实际上,在高频下,诸如FET之类的微波晶体管的电极尺寸变得与波长相当,从而突出了波传播的寄生效应。因此,需要在设备模型中准确评估此影响以确保可靠的设计。 ud在电气模型中,然后将设备宽度划分为无穷多个段,而每个段都被视为三对耦合线的组合通过使用有限差分时域(FDTD)技术求解一组多导体传输线方程,提出了一种精确有效的晶体管建模方法。 ud此外,已经建立了二维流体动力学模型。如图所示,HDM模型用于研究栅极长度及其凹陷深度对凹陷的MESFET和pHEMT的影响。已经发现,通过减小栅极长度和加深凹槽来改善这些器件的性能。还研究了增加δ掺杂密度对pHEMT性能的影响。这是一种提高电子从掺杂三角形的AlGaAs层到InGaAs沟道的传输效率的方法。对于深层,发现深受体可以改善晶体管性能,而深施主会使晶体管性能下降。

著录项

  • 作者

    Abdeslam Nora Amele;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号