首页> 外文OA文献 >Spectral-spatial MODIS image analysis using swarm intelligence algorithms and region based segmentation for flood assessment
【2h】

Spectral-spatial MODIS image analysis using swarm intelligence algorithms and region based segmentation for flood assessment

机译:利用群体智能算法和基于区域的分割进行光谱空间MODIS图像分析,以进行洪水评估

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper discusses an approach for river mapping and flood evaluation based on multi-temporal time-series analysis of satellite images utilizing pixel spectral information for image clustering and region based segmentation for extracting water covered regions. MODIS satellite images are analyzed at two stages: before flood and during flood. Multi-temporal MODIS images are processed in two steps. In the first step, clustering algorithms such as Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) are used to distinguish the water regions from the non-water based on spectral information. These algorithms are chosen since they are quite efficient in solving multi-modal optimization problems. These classified images are then segmented using spatial features of the water region to extract the river. From the results obtained, we evaluate the performance of the methods and conclude that incorporating region based image segmentation along with clustering algorithms provides accurate and reliable approach for the extraction of water covered region.
机译:本文讨论了一种基于卫星图像多时间时间序列分析的河流制图和洪水评估方法,该方法利用像素光谱信息进行图像聚类和基于区域的分割来提取水覆盖区域。 MODIS卫星图像的分析分为两个阶段:洪水之前和洪水期间。多时间MODIS图像分两个步骤处理。第一步,使用聚类算法(例如遗传算法(GA)和粒子群优化(PSO)),根据光谱信息将水域与非水域区分开。选择这些算法是因为它们在解决多模式优化问题方面非常有效。然后,使用水域的空间特征对这些分类图像进行分割,以提取河流。从获得的结果中,我们评估了这些方法的性能,并得出结论,将基于区域的图像分割与聚类算法相结合,可为提取水覆盖区域提供准确而可靠的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号