首页> 外文OA文献 >A Quasi-Newton Adaptive Algorithm for Estimating Generalized Eigenvectors
【2h】

A Quasi-Newton Adaptive Algorithm for Estimating Generalized Eigenvectors

机译:估计广义特征向量的拟牛顿自适应算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We first introduce a constrained minimization formulation for the generalized symmetric eigenvalue problem and then recast it into an unconstrained minimization problem by constructing an appropriate cost function. The minimizer of this cost function corresponds to the eigenvector corresponding to the minimum eigenvalue of the given symmetric matrix pencil and all minimizers are global minimizers. We also present an inflation technique for obtaining multiple generalized eigenvectors of this pencil. Based on this asymptotic formulation, we derive a quasi-Newton adaptive algorithm for estimating these eigenvectors in the data case. This algorithm is highly modular and parallel with a computational complexity of $O(N_2)$multiplications, N being the problem-size. Simulation results show fast convergence and good quality of the estimated eigenvectors.
机译:我们首先为广义对称特征值问题引入约束最小化公式,然后通过构建适当的成本函数将其重铸为无约束最小化问题。此成本函数的最小化子对应于对应于给定对称矩阵笔的最小特征值的特征向量,所有最小化子均为全局最小化子。我们还提出了一种充气技术,用于获取该铅笔的多个广义特征向量。基于这种渐近公式,我们推导了一种准牛顿自适应算法,用于估计数据情况下的这些特征向量。该算法是高度模块化的,并且具有$ O(N_2)$乘法的计算复杂度,其中N为问题大小。仿真结果表明,所估计的特征向量具有快速收敛性和良好的质量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号