首页> 外文OA文献 >I/O Complexity for Range Queries on Region Data Stored Using an R-tree
【2h】

I/O Complexity for Range Queries on Region Data Stored Using an R-tree

机译:使用R树存储的区域数据上的范围查询的I / O复杂性

摘要

We study the node distribution of an R-tree storing region data, like for instance islands, lakes or human-inhabited areas. We show that real region datasets are packed in minimum bounding rectangles (MBRs) whose area distribution follows the same power law, named REGAL (REGion Area Law), as that for the regions themselves. Moreover these MBRs are packed in their turn into MBRs following the same law, and so on iteratively, up to the root of the R-tree. Based on this observation, we are able to accurately estimate the search effort for range queries, the most prominent spatial operation, using a small number of easy-to-retrieve parameters. Experiments on a variety of real datasets (islands, lakes, human-inhabited areas) show that our estimation is accurate, enjoying a maximum geometric average relative error within 30%
机译:我们研究了存储区域数据的R树的节点分布,例如岛屿,湖泊或人类居住区。我们显示真实区域数据集被打包在最小边界矩形(MBR)中,其区域分布遵循与区域本身相同的幂定律,即REGAL(区域面积定律)。而且,这些MBR按照相同的规律依次打包为MBR,依此类推,直到R树的根。基于此观察,我们能够使用少量易于检索的参数来准确估算范围查询(最突出的空间操作)的搜索工作量。在各种真实数据集(岛屿,湖泊,人类居住区)上进行的实验表明,我们的估算是准确的,最大几何平均相对误差在30%以内

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号