首页> 外文OA文献 >Modeling User Arguments, Interactions, and Attributes for Stance Prediction in Online Debate Forums
【2h】

Modeling User Arguments, Interactions, and Attributes for Stance Prediction in Online Debate Forums

机译:在线辩论论坛中的姿态预测的用户参数,交互作用和属性建模

摘要

Online debate forums are important social media for people to voice their opinions and debate with each other. Mining user stances or viewpoints from these forums has been a popular research topic. However, most current work does not address an important problem: for a specific issue, there may not be many users participating and expressing their opinions. Despite the sparsity of user stances, users may provide rich side information; for example, users may write arguments to back up their stances, interact with each other, and provide biographical information. In this work, we propose an integrated model to leverage side information. Our proposed method is a regression-based latent factor model which jointly models user arguments, interactions, and attributes. Our method can perform stance prediction for both warm-start and cold-start users. We demonstrate in experiments that our method has promising results on both micro-level and macro-level stance prediction.
机译:在线辩论论坛是人们发表意见和相互辩论的重要社交媒体。从这些论坛中挖掘用户的立场或观点一直是热门的研究主题。但是,当前的大多数工作都没有解决一个重要的问题:对于一个特定的问题,可能没有太多用户参与并发表意见。尽管用户立场不多,但用户可能会提供丰富的辅助信息。例如,用户可以编写论据以支持其立场,彼此互动并提供传记信息。在这项工作中,我们提出了一个整合模型来利用辅助信息。我们提出的方法是一个基于回归的潜在因子模型,该模型可以联合建模用户参数,交互和属性。我们的方法可以为热启动和冷启动用户执行姿态预测。我们在实验中证明了我们的方法在微观和宏观姿态预测上均具有可喜的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号