首页> 外文OA文献 >A Theory of Transfer Learning with Applications to Active Learning
【2h】

A Theory of Transfer Learning with Applications to Active Learning

机译:迁移学习理论及其在主动学习中的应用

摘要

We explore a transfer learning setting, in which a finite sequence of target concepts are sampled independently with an unknown distribution from a known family. We study the total number of labeled examples required to learn all targets to an arbitrary specified expected accuracy, focusing on the asymptotics in the number of tasks and the desired accuracy. Our primary interest is formally understanding the fundamental benefits of transfer learning, compared to learning each target independently from the others. Our approach to the transfer problem is general, in the sense that it can be used with a variety of learning protocols. As a particularly interesting application, we study in detail the benefits of transfer for self-verifying active learning; in this setting, we find that the number of labeled examples required for learning with transfer is often significantly smaller than that required for learning each target independently.
机译:我们探索了一种转移学习的环境,在这种环境中,目标概念的有限序列以已知家族的未知分布独立采样。我们研究了为达到任意指定的预期准确度而学习所有目标所需的带标记示例的总数,重点是任务数量和所需准确度上的渐近性。与独立学习每个目标相比,我们的主要兴趣是正式了解迁移学习的基本好处。从某种意义上说,我们可以采用各种学习协议来解决转移问题。作为一个特别有趣的应用程序,我们详细研究了转移对自我验证的主动学习的好处;在这种情况下,我们发现通过转移学习所需的带标签示例的数量通常明显少于独立学习每个目标所需的标记示例的数量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号