首页> 外文OA文献 >Experiments with a Hindi-to-English Transfer-based MT System under a Miserly Data Scenario
【2h】

Experiments with a Hindi-to-English Transfer-based MT System under a Miserly Data Scenario

机译:在错误数据场景下使用基于印地语到英语的基于MT的MT系统进行实验

摘要

We describe an experiment designed to evaluate the capabilities of our trainable transfer-based (Xfer) machine translation approach, as applied to the task of Hindi-to-English translation, and trained under an extremely limited data scenario. We compare the performance of the Xfer approach with two corpus-based approaches---Statistical MT (SMT) and Example-based MT (EBMT)---under the limited data scenario. The results indicate that the Xfer system significantly outperforms both EBMT and SMT in this scenario. Results also indicate that automatically learned transfer rules are effective in improving translation performance, compared with a baseline word-to-word translation version of the system. Xfer system performance with a limited number of manually written transfer rules is, however, still better than the current automatically inferred rules. Furthermore, a u22multiengineu22 version of our system that combined the output of the Xfer and SMT systems and optimizes translation selection outperformed both individual systems.
机译:我们描述了一个旨在评估我们的可训练的基于传输的(Xfer)机器翻译方法的功能的实验,该方法应用于印地语到英语的翻译任务,并且在非常有限的数据情况下进行了训练。在有限的数据场景下,我们将Xfer方法与两种基于语料库的方法-统计MT(SMT)和基于示例的MT(EBMT)的性能进行了比较。结果表明,在这种情况下,Xfer系统的性能明显优于EBMT和SMT。结果还表明,与系统的基准词对词翻译版本相比,自动学习的传输规则可有效提高翻译性能。但是,使用有限数量的手动编写的传输规则的Xfer系统性能仍要优于当前的自动推断规则。此外,我们系统的 u22multiengine u22版本结合了Xfer和SMT系统的输出并优化了翻译选择,其性能优于两个系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号