首页> 外文OA文献 >NP-MuScL: unsupervised global prediction of interaction networks from multiple data sources.
【2h】

NP-MuScL: unsupervised global prediction of interaction networks from multiple data sources.

机译:NP-MuScL:来自多个数据源的交互网络的无监督全局预测。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Inference of gene interaction networks from expression data usually focuses on either supervised or unsupervised edge prediction from a single data source. However, in many real world applications, multiple data sources, such as microarray and ISH (in situ hybridization) measurements of mRNA abundances, are available to offer multiview information about the same set of genes. We propose ISH to estimate a gene interaction network that is consistent with such multiple data sources, which are expected to reflect the same underlying relationships between the genes. NP-MuScL casts the network estimation problem as estimating the structure of a sparse undirected graphical model. We use the semiparametric Gaussian copula to model the distribution of the different data sources, with the different copulas sharing the same precision (i.e., inverse covariance) matrix, and we present an efficient algorithm to estimate such a model in the high-dimensional scenario. Results are reported on synthetic data, where NP-MuScL outperforms baseline algorithms significantly, even in the presence of noisy data sources. Experiments are also run on two real-world scenarios: two yeast microarray datasets and three Drosophila embryonic gene expression datasets, where NP-MuScL predicts a higher number of known gene interactions than existing techniques.
机译:从表达数据推断基因相互作用网络通常集中在单个数据源的有监督或无监督边缘预测上。但是,在许多实际应用中,可以使用多个数据源(例如微阵列和ISH(原位杂交)mRNA丰度测量)来提供有关同一组基因的多视图信息。我们提出ISH来估计与此类多个数据源一致的基因相互作用网络,这些数据源有望反映基因之间相同的潜在关系。 NP-MuScL将网络估算问题视为估算稀疏无向图形模型的结构。我们使用半参数高斯copula来建模不同数据源的分布,其中不同copula共享相同的精度(即逆协方差)矩阵,并且我们提出了一种有效的算法来估计高维场景中的这种模型。结果报告在合成数据上,即使存在嘈杂的数据源,NP-MuScL的性能也明显优于基线算法。实验还在两个现实世界中进行:两个酵母微阵列数据集和三个果蝇胚胎基因表达数据集,其中NP-MuScL预测比现有技术有更多的已知基因相互作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号