首页> 外文OA文献 >AN ASSESSMENT OF SAMPLING DETECTABILITY FOR GLOBAL BIODIVERSITY MONITORING: RESULTS FROM SAMPLING GRIDS IN DIFFERENT CLIMATIC REGIONS
【2h】

AN ASSESSMENT OF SAMPLING DETECTABILITY FOR GLOBAL BIODIVERSITY MONITORING: RESULTS FROM SAMPLING GRIDS IN DIFFERENT CLIMATIC REGIONS

机译:全球生物多样性监测的取样可探测性评估:来自不同气候区域的取样网格的结果

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This thesis provides important input for the development of a cost-effective global biodiversity assessment and monitoring system. The study is embedded in a larger project to evaluate possibilities of multiple-species surveys using biodiversity GRIDs. As a pilot study six GRIDs in diverse ecosystem settings are sampled. Sampling methods used for animal species are point transects for birds and trapping webs for arthropods; additionally a line transects add-on protocol is used at some study areas for amphibians, reptiles and butterflies. Within this framework the task is taken over to develop predictive models for sampled animal species with Random Forests. Additionally the data is analyzed to derive abundance estimates with multiple covariate DISTANCE sampling and occupancy estimates through the software PRESENCE.ud-- ud-- A total of 5,007 observations from six study areas from all over the world are analyzed in detail. Total sampling time is about 12 weeks. High quality non-random predictive models with a ROC value > 0.5 are gained with Random Forests analysis for 116 described animal narratives. Half of these observations origin from point transect sampling, the other half from trapping web catches. The line transects add-on protocol results in another 3 predictive models. Abundance and occupancy estimates are derived from the data for 46 animal narratives, 23 of those for point transect data, 22 for trapping web data, and 1 for line transect data. Predictive modeling with Random Forests proves to be a very powerful tool. DISTANCE sampling estimates from this study show large confidence interval ranges, but are extremely cost-efficient to gather initial information for multiple species rapidly. PRESENCE estimates are partly unsatisfying because of a large portion of animal narratives with perfect occupancy estimates (Psi = 1.0). It is assumed that this is an effect of small sampling size which will not be problematic for larger amounts of data. This has to be kept in mind when comparing DISTANCE and PRESENCE results. Correlation between DISTANCE and PRESENCE detection probability estimates is negative, while correlation between DISTANCE abundance estimates and PRESENCE occupancy estimates is positive for all but one study area. It is recommended to repeat the comparison when data from more plots is available. On one hand the results, the cost-effectiveness of the study, and possibilities opened by this kind of multiple-species multi-method sampling are promising, on the other hand funding for this visionary approach was not available.
机译:该论文为建立具有成本效益的全球生物多样性评估和监测系统提供了重要的投入。该研究被嵌入到一个更大的项目中,以评估使用生物多样性GRID进行多物种调查的可能性。作为一项试点研究,对不同生态系统环境中的六个GRID进行了采样。用于动物物种的采样方法是鸟类的点样线和节肢动物的诱集网。此外,在某些研究区域,还对两栖动物,爬行动物和蝴蝶使用线样附加方案。在此框架内,接管了为随机森林开发采样动物物种的预测模型的任务。此外,还可以通过软件PRESENCE对数据进行分析,以通过多个协变量DISTANCE采样和占用率估计来得出丰度估计值。 ud- ud--详细分析了来自世界各地六个研究领域的5,007个观测值。总采样时间约为12周。通过随机森林分析获得的116种动物叙述,可获得ROC值> 0.5的高质量非随机预测模型。这些观测值的一半来自点样点采样,另一半来自捕获网状捕获物。该线样面附加协议会生成另外3个预测模型。丰富度和占用率估计值来自以下46种动物叙述的数据,其中23种用于点样数据,22种用于捕获Web数据以及1种用于线样数据。事实证明,使用随机森林进行预测建模是一个非常强大的工具。这项研究的DISTANCE抽样估计显示出较大的置信区间范围,但极具成本效益,可以迅速收集多个物种的初始信息。由于很大一部分动物的叙述具有完美的占有率估计值(Psi = 1.0),因此存在估计值部分不令人满意。假定这是小采样大小的影响,对于大量数据不会造成问题。比较DISTANCE和PRESENCE结果时必须牢记这一点。除一个研究区域外,所有区域的DISTANCE和PRESENCE检测概率估计值之间的相关均为负,而DISTANCE丰度估计与PRESENCE占用率估计之间的相关为正。如果有更多图的数据可用,建议重复比较。一方面,结果,这项研究的成本效益以及这种多物种多方法抽样所带来的可能性是有希望的,另一方面,这种远见的方法也没有资金。

著录项

  • 作者

    Nemitz Dirk;

  • 作者单位
  • 年度 2008
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号