首页> 外文OA文献 >Applications of interval analysis to selected topics in statistical computing
【2h】

Applications of interval analysis to selected topics in statistical computing

机译:区间分析在统计计算中对选定主题的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In interval analysis, an interval is treated not only as a set of numbers, but as a number in and of itself. The development of interval analysis is closely connected to the development of electronic digital computers. Conventional electronic computation is typically performed using a fixed-precision, floating-point processor. This approach is a finite approximation to calculations with real numbers of infinite precision. The finite approximation leads to errors of various types. While the fundamental operations of addition, subtraction, multiplication and division are typically accurate to one-half unit-last-place in floating-point computations, the effect of cumulative error in repeated calculations is usually unknown and too-frequently ignored. Using interval analysis, an interval is constructed which (after each computation) is guaranteed to contain the true value. By seeking ways to keep the interval narrow, it is possible to obtain results which are of guaranteed accuracy;This dissertation uses interval analysis in topics of statistical computing. Two major topics are addressed: bounding computational errors and global optimization;For bounding computational errors, series are used which yield a bound on the truncation error which results from a finite series approximation to an infinite series. By evaluating the series with intervals to bound rounding errors and by using the bound on the truncation error, an interval is obtained which is guaranteed to contain the true value. For some series, interval numerical quadrature rules are also employed. These ideas are applied to the computation of tail probabilities and critical points of several statistical distributions such as Bivariate Chi-Square and Bivariate F distributions;As regards to global optimization, the EM algorithm is one tool frequently used for optimization in Statistics and Probability; The EM algorithm is fairly flexible and is able to handle missing data. However, as with most optimization algorithms, there is no guarantee of finding a global optimum. Interval analysis can be used to compute an enclosure of the range of a function over a specified domain. By enclosing the range of the gradient of the loglikelihood, those parts of the parameter space where the gradient is nonzero can be eliminated as not containing stationary points. An algorithm proceeds by repeatedly bisecting an initial region into smaller regions which are evaluated for the possibility of the gradient being nonzero. Upon termination, all stationary points of the loglikelihood are contained in the remaining regions.
机译:在间隔分析中,间隔不仅被视为一组数字,而且本身也被视为一个数字。间隔分析的发展与电子数字计算机的发展紧密相关。传统的电子计算通常使用固定精度的浮点处理器来执行。这种方法是对无限精确的实数计算的有限近似。有限逼近会导致各种类型的误差。尽管加法,减法,乘法和除法的基本运算在浮点计算中通常精确到最后一半的单位,但在重复计算中累积误差的影响通常是未知的,也经常被忽略。使用间隔分析,可以构造一个间隔(在每次计算之后)以确保包含真实值。通过寻找使区间变窄的方法,可以获得有保证的准确度的结果。解决了两个主要主题:边界计算误差和全局最优化;对于边界计算误差,使用了级数,该级数对截断误差产生了边界,该截断误差是由有限级数逼近到无限级数而产生的。通过对间隔取有界的舍入误差进行评估,并使用截断误差的界,可以确保得到一个包含真实值的区间。对于某些系列,也采用间隔数值正交规则。这些思想被应用于计算诸如双变量卡方和双变量F分布的几种统计分布的尾部概率和临界点。 EM算法非常灵活,能够处理丢失的数据。但是,与大多数优化算法一样,不能保证找到全局最优值。间隔分析可用于计算指定范围内函数范围的包围。通过封闭对数似然的梯度范围,可以消除参数空间中梯度为非零的那些部分,因为它们不包含固定点。通过将初始区域一分为二地分成较小的区域来进行算法,评估该区域的梯度是否为非零的可能性。终止时,对数似然的所有固定点都包含在其余区域中。

著录项

  • 作者

    Wright, Kevin Douglas;

  • 作者单位
  • 年度 1999
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号