首页> 外文OA文献 >Bayesian Complex Amplitude Estimation and Adaptive Matched Filter Detection in Low-Rank Interference
【2h】

Bayesian Complex Amplitude Estimation and Adaptive Matched Filter Detection in Low-Rank Interference

机译:低秩干扰中的贝叶斯复振幅估计和自适应匹配滤波器检测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We propose a Bayesian method for complex amplitude estimation in low-rank interference. We assume that the received signal follows the generalized multivariate analysis of variance (GMANOVA) patterned-mean structure and is corrupted by low-rank spatially correlated interference and white noise. An iterated conditional modes (ICM) algorithm is developed for estimating the unknown complex signal amplitudes and interference and noise parameters. We also discuss initialization of the ICM algorithm and propose a (non-Bayesian) adaptive-matched-filter (AMF) signal detector that utilizes the ICM estimation results. Numerical simulations demonstrate the performance of the proposed methods
机译:我们提出了一种用于低秩干扰中的复杂幅度估计的贝叶斯方法。我们假设接收到的信号遵循广义多变量方差分析(GMANOVA)的均值模式结构,并且受到低秩的空间相关干扰和白噪声的破坏。开发了迭代条件模式(ICM)算法,用于估计未知的复杂信号幅度以及干扰和噪声参数。我们还将讨论ICM算法的初始化,并提出利用ICM估计结果的(非贝叶斯)自适应匹配滤波器(AMF)信号检测器。数值模拟证明了所提出方法的性能

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号