首页> 外文OA文献 >Decision support system for sensor-based autonomous filling of grain containers
【2h】

Decision support system for sensor-based autonomous filling of grain containers

机译:基于传感器的谷物容器自动填充决策支持系统

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Autonomous technology in agriculture offers many products that reduce distractions and fatigue experienced by machinery operators, including automatic path guidance, variable rate product delivery, and precision seed placement. However, the size and complexity of modern mechanical harvesting operations have limited the ability of autonomous technology to significantly reduce total negative effects on grain combine operators. Combine operators are highly susceptible to fatigue because several tasks must be performed simultaneously to ensure safe machine operation. These duties include monitoring internal threshing and crop flow intake, maintaining row alignment, avoiding foreign material intake, and overseeing unloading grain.The primary goal of this project was to design a decision support system for autonomous unloading of combines. When unloading grain on-the-go, operators divert more attention away from critical tasks to focus on grain delivery to the adjacent cart. An autonomous system eliminating the need for combine operators to focus on unloading on-the-go potentially reduces operator stress and grain spillage.Critical to the decision support system for autonomous unloading was the input of a two-dimensional fill grid used to describe the grain height in the cart. The inverse distance weighting method, an estimation technique common to spatial data modeling, was used to estimate points in the fill grid of a grain cart prone to being immeasurable or highly variable. This method was successful in estimating missing points in a grain cart under difficult delivery conditions to within 15 cm of underestimation and 25 cm of overestimation. A model to predict the weight of grain in a grain cart was developed using the average grain height measured in the cart. The model demonstrated high robustness by producing mean errors that changed by less than 2% of the total cart volume when the delivery conditions strayed from typical conditions to highly biased conditions. The decision support system that was developed exhibited robust performance when critical features of the system were tested at typical levels. Field testing validated the potential to apply the decision support system to autonomous combine unloading systems by producing predictable and consistent final cart volumes that were within 5% of the total volume.
机译:农业自主技术提供了许多产品,可减轻机械操作员的干扰和疲劳,包括自动路径引导,可变速率的产品交付和精确的种子放置。但是,现代机械收割作业的规模和复杂性限制了自主技术显着减少对谷物联合收割机操作者的负面影响的能力。联合收割机的操作员极易疲劳,因为必须同时执行多项任务才能确保机器安全运行。这些职责包括监视内部脱粒和农作物进料,保持行对齐,避免异物摄入以及监督谷物的卸载。该项目的主要目标是设计一种用于自动卸载联合收割机的决策支持系统。在旅途中卸粮时,操作员将更多的注意力从关键任务转移到了将粮食集中到相邻小车上。无需联合操作员专注于移动卸货的自治系统可能会减少操作员的压力和谷物泄漏。自动卸货决策支持系统的关键是用于描述谷物的二维填充网格的输入购物车中的高度。逆距离加权方法是空间数据建模常用的一种估计技术,用于估计易于测量或高度可变的谷物推车填充网格中的点。该方法成功地估计了在困难运输条件下(低估了15厘米)和高估了25厘米以内的谷物车中的缺失点。使用推车中测得的平均谷物高度,开发了预测谷物推车中谷物重量的模型。该模型通过产生平均误差,证明了高鲁棒性,当交货条件从典型条件偏离到高度偏向条件时,平均误差的变化小于购物车总体积的2%。当在典型水平上测试系统的关键功能时,开发的决策支持系统表现出强大的性能。现场测试通过产生可预测且一致的最终推车体积在总体积的5%之内,验证了将决策支持系统应用于自主联合卸货系统的潜力。

著录项

  • 作者

    Jennett, Andrew Thomas;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号