首页> 外文OA文献 >Learning dispatching rules via an association rule mining approach
【2h】

Learning dispatching rules via an association rule mining approach

机译:通过关联规则挖掘方法学习调度规则

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This thesis proposes a new idea using association rule mining-based approach for discovering dispatching rules in production data. Decision trees have previously been used for the same purpose of finding dispatching rules. However, the nature of the decision tree as a classification method may cause incomplete discovery of dispatching rules, which can be complemented by association rule mining approach. Thus, the hidden dispatching rules can be detected in the use of association rule mining method. Numerical examples of scheduling problems are presented to illustrate all of our results. In those examples, the schedule data of single machine system is analyzed by decision tree and association rule mining, and findings of two learning methods are compared as well. Furthermore, association rule mining technique is applied to generate dispatching principles in a 6 x 6 job shop scheduling problem. This means our idea can be applicable to not only single machine systems, but also other ranges of scheduling problems with multiple machines. The insight gained provides the knowledge that can be used to make a scheduling decision in the future.
机译:本文提出了一种基于关联规则挖掘的方法来发现生产数据中的调度规则的新思想。决策树以前曾用于查找调度规则的相同目的。但是,决策树作为分类方法的性质可能会导致不完全发现调度规则,这可以通过关联规则挖掘方法进行补充。因此,可以使用关联规则挖掘方法来检测隐藏的调度规则。给出了调度问题的数值示例,以说明我们的所有结果。在这些示例中,通过决策树和关联规则挖掘对单机系统的计划数据进行了分析,并且还比较了两种学习方法的发现。此外,在6 x 6作业车间调度问题中,应用了关联规则挖掘技术来生成调度原理。这意味着我们的想法不仅适用于单机系统,而且适用于多机调度问题的其他范围。所获得的见解提供了可用于将来做出调度决策的知识。

著录项

  • 作者

    Kim, Dongwook;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号