首页> 外文OA文献 >NMR investigations of biological and synthetic phosphate-based nanocomposites
【2h】

NMR investigations of biological and synthetic phosphate-based nanocomposites

机译:生物和合成磷酸盐基纳米复合材料的NMR研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The study of complex organic, inorganic and composite systems is greatly facilitated by solid state nuclear magnetic resonance (NMR) spectroscopy. This is especially true for materials lacking crystalline long-range order or having low atomic mass contrast, such as amorphous organic materials, which renders other methods such as x-ray diffraction (XRD) and transmission electron microscopy (TEM) incapable of comprehensive characterization. In this dissertation, a variety of one- and two-dimensional (2D) solid-state NMR measurements are applied to investigate the composition and nanometer-scale structure of a variety of organic-inorganic hybrid systems as well as complex inorganic phases. Bone, which is a natural nanocomposite of an inorganic apatitic phosphate and the organic protein collagen, has been studied by 1H single-resonance, 1H-31P and 1H-13C double-resonance, as well as 1H-13C-31P triple-resonance experiments. Analysis of 31P dephasing by heteronuclear recoupling with dephasing by strong homonuclear interactions of protons (HARDSHIP) has provided information about the size of the apatite nanocrystals. The concentrations of various moieties in the composite, such as the OH-, CO32-,HPO4 2-,H2O-PO43-, and Na in the inorganic apatite, were determined by quantitative spectroscopy via spectral selection of specific chemical moieties. X{lcub} 1H{rcub} HARDSHIP NMR was used to prove their incorporation into the apatite nanocrystals. 31P chemical shift anisotropy (CSA) dephasing experiments as well as 1H{lcub}31P{rcub} rotational echo double resonance (REDOR) experiments have identified and quantified the hydrogen and phosphate species located at the surface and the interior of the apatite crystal. Strongly bound H2O, as well as a layer of viscous water, is present at the organic-inorganic interface, as proven by 1H spin-diffusion detected via 13C and 31P nuclei. Investigation of the proximity of organic moieties to the apatite surface via 13C{lcub}31P{rcub} heteronuclear recoupling experiments provide a structural insight of the organic-inorganic interface.;Biomimetic synthetic organic-inorganic phosphate hybrid materials have been investigated. 31P NMR spectroscopy has enabled identification and quantification of the different types of phosphates in these materials, and the formation of nanocomposites is proven by wideline separation (WISE) NMR with spin diffusion. A bone-replacement material, Si/Zn-doped beta-tricalcium phosphate (TCP), has also been investigated. Spectral selection techniques based on J-modulation and double-quantum filtering have enabled elucidation of the spectrally overlapping silicate Q species. 29Si{lcub} 31P{rcub} REDOR proves that while the silicate is indeed incorporated into the TCP matrix, it is significantly aggregated into ∼7 nm diameter domains. Further, a new class of hybrid systems based on polyamide 6 and phosphate glass was studied, where HARDSHIP has confirmed the formation of nanocomposites of the phosphate glass dispersed in the polyamide matrix. 1H- 31P heteronuclear correlation (HetCor) NMR indicated phosphate-polyamide interactions and alterations of the phosphate glass surface by the polyamide matrix. 13C NMR has also shown that the phosphate glass promotes the crystalline gamma-phase of the polyamide.
机译:固态核磁共振(NMR)光谱极大地促进了复杂的有机,无机和复合系统的研究。对于缺乏晶体长程有序或具有低原子质量对比度的材料(例如非晶有机材料)尤其如此,这使得其他方法(例如X射线衍射(XRD)和透射电子显微镜(TEM))无法全面表征。本文采用多种一维和二维(2D)固态NMR测量方法,研究了多种有机-无机杂化体系以及复杂的无机相的组成和纳米级结构。已经通过1H单共振,1H-31P和1H-13C双共振以及1H-13C-31P三共振实验研究了骨,它是无机磷灰石磷酸盐和有机蛋白胶原蛋白的天然纳米复合材料。 。通过异质核偶联引起的31P脱相与质子强同核相互作用的脱相(HARDSHIP)的分析提供了有关磷灰石纳米晶体尺寸的信息。通过定量光谱通过特定化学部分的光谱选择,确定了复合材料中各种部分的浓度,例如无机磷灰石中的OH-,CO32-,HPO4 2-,H2O-PO43-和Na的浓度。 X {lcub} 1H {rcub} HARDSHIP NMR被用来证明它们掺入到磷灰石纳米晶体中。 31P化学位移各向异性(CSA)移相实验以及1H {lcub} 31P {rcub}旋转回波双共振(REDOR)实验已经鉴定并量化了磷灰石晶体表面和内部的氢和磷酸盐物种。经由13C和31P核检测到的1H自旋扩散证明,在有机-无机界面处存在结合牢固的H2O以及一层粘性水。通过13C {lcub} 31P {rcub}异核偶联实验研究有机基团与磷灰石表面的接近度,为有机-无机界面的结构提供了见识。仿生合成有机-无机磷酸盐杂化材料得到了研究。 31P NMR光谱能够鉴定和量化这些材料中不同类型的磷酸盐,并且通过具有自旋扩散的宽谱分离(WISE)NMR证明了纳米复合材料的形成。还研究了一种骨替代材料,Si / Zn掺杂的β-磷酸三钙(TCP)。基于J调制和双量子滤波的光谱选择技术使得能够阐明光谱重叠的硅酸盐Q物种。 29Si {lcub} 31P {rcub} REDOR证明,尽管硅酸盐确实掺入TCP基质中,但它显着聚集在直径约7 nm的区域中。此外,还研究了基于聚酰胺6和磷酸盐玻璃的新型混合体系,其中HARDSHIP已确认形成了分散在聚酰胺基质中的磷酸盐玻璃的纳米复合材料。 1H- 31P异核相关性(HetCor)NMR表明,聚酰胺基体会发生磷酸盐-聚酰胺相互作用和磷酸盐玻璃表面的变化。 13 C NMR还表明,磷酸盐玻璃促进了聚酰胺的结晶γ相。

著录项

  • 作者

    Rawal, Aditya;

  • 作者单位
  • 年度 2007
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号