首页> 外文OA文献 >Adaptive neuro-fuzzy inference system-based backcalculation approach to airport pavement structural analysis
【2h】

Adaptive neuro-fuzzy inference system-based backcalculation approach to airport pavement structural analysis

机译:基于自适应神经模糊推理系统的机场道面结构反算方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper describes the application of adaptive neuro-fuzzy inference system (ANFIS) methodology for the backcalculation of airport flexible pavement layer moduli. The proposed ANFIS-based backcalculation approach employs a hybrid learning procedure to construct a non-linear input-output mapping based on qualitative aspects of human knowledge and pavement engineering experience incorporated in the form of fuzzy if-then rules as well as synthetically generated Finite Element (FE) based pavement modeling solutions in the form of input-output data pairs. The developed neuro-fuzzy backcalculation methodology was evaluated using hypothetical data as well as extensive non-destructive field deflection data acquired from a state-of-the-art full-scale airport pavement test facility. It was shown that the ANFIS based backcalculation approach inherits the fundamental capability of a fuzzy model to especially deal with nonrandom uncertainties, vagueness, and imprecision associated with non-linear inverse analysis of transient pavement surface deflection measurements.
机译:本文介绍了自适应神经模糊推理系统(ANFIS)方法在机场柔性路面层模量反算中的应用。拟议的基于ANFIS的反算方法采用混合学习程序,以基于人类知识和路面工程经验的定性方面(以模糊if-then规则的形式结合人工合成的有限元)构建非线性输入-输出映射。 (FE)的输入输出数据对形式的路面建模解决方案。使用假设数据以及从最先进的全面机场铺面测试设施获得的广泛的非破坏性场偏转数据,对开发的神经模糊反演方法进行了评估。结果表明,基于ANFIS的反算方法继承了模糊模型的基本功能,可以特别处理与瞬态路面表面挠度测量的非线性逆分析相关的非随机不确定性,模糊性和不精确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号