首页> 外文OA文献 >Numerical simulation of turbulent gas-particle flow in a riser using a quadrature-based moment method
【2h】

Numerical simulation of turbulent gas-particle flow in a riser using a quadrature-based moment method

机译:基于正交矩法的立管中湍流气固两相流的数值模拟

摘要

Gas-particle flows are used in many industrial applications in the energy, oil and gas fields, such as coal gasification, production of light hydrocarbons by fluid catalytic cracking, catalytic combustion and different treatments aiming to reduce or eliminate pollutants. The particle phase of a gas-particle flow is described by analogy to a granular gas, by finding an approximate solution of the kinetic equation in the velocity-based number density function. In the recent past, many studies have been published on the mathematical modeling of gas-particle flows using hydrodynamic models (e.g. Enwald et al. 1996), where Navier-Stokes-type equations are solved to describe the particle phase as a continuum, computing its stress tensor using moment closures from kinetic theory (Gidaspow 1994). These closures, however, are obtained assuming that the flow is dominated by collisions and near equilibrium, which corresponds to considering a very small particle-phase Knudsen number. This assumption leads to inconsistencies and erroneous predictions of physical phenomena when these models are applied to dilute fluid-particle flows, where rarefaction effects are not negligible. In these flows, the wall Knudsen layers extend inside the bulk of the fluid, and cannot be accounted for with the simple addition of partial-slip boundary conditions. Recently Desjardin et al. (2008) showed that two-fluid models are unable to correctly capture particle trajectory crossing, seriously compromising their ability to correctly describe any velocity moment for finite Stokes numbers. These authors clarified that the particle segregation captured by two-fluid models for finite Knudsen numbers is artificially high due to their mathematical formulation, which leads to the formation of delta-shocks. In order to overcome these shortcomings, Fox (2008) developed a third-order quadrature-based moment method for dilute gas-particle flows, which has been successfully coupled to a fluid solver to compute dilute and moderately dilute gas-particle flows by Passalacqua et al. (2010) in two dimensions. These authors validated their model against Euler-Lagrange and two-fluid simulations. In this work, the fully coupled quadrature-based fluid-particle code described in Passalacqua et al. (2010) is applied to simulate turbulent gas-particle flow in the riser described by He et al. (2009), using a three-dimensional configuration. This application shows the predictive capabilities and the robustness of the quadrature-based moment method to predict the behavior of gas-particle flows in accordance with experiments (He et al. 2009).
机译:气体颗粒流用于能源,石油和天然气领域的许多工业应用中,例如煤气化,通过流化催化裂化生产轻烃,催化燃烧和旨在减少或消除污染物的各种处理方法。通过在基于速度的数密度函数中找到动力学方程的近似解,类似于颗粒气体来描述气体颗粒流的颗粒相。最近,关于使用流体力学模型对气体颗粒流动进行数学建模的许多研究已经发表(例如,Enwald等人,1996年),其中求解了Navier-Stokes型方程,将颗粒相描述为连续体,计算它的应力张量是使用动力学理论中的矩闭包(Gidaspow 1994)。但是,这些闭合是在假设流动以碰撞和接近平衡为主的情况下获得的,这相当于考虑了非常小的粒子相Knudsen数。当将这些模型应用于稀薄的流体流动时,稀疏效应不可忽略,这种假设导致对物理现象的不一致和错误的预测。在这些流动中,壁努森层在流体的大部分内部延伸,无法通过简单添加部分滑移边界条件来解决。最近Desjardin等。 (2008年)表明,双流体模型不能正确地捕捉粒子轨迹的交叉,严重损害了他们对有限的斯托克斯数正确描述任何速度矩的能力。这些作者澄清说,由于有限的Knudsen数,两流体模型捕获的颗粒偏析由于其数学公式而人为地高,这导致了三角形激波的形成。为了克服这些缺点,Fox(2008)开发了一种基于三阶基于矩的矩量法来处理稀薄的气体颗粒流,该方法已成功地与流体求解器结合使用,由Passalacqua等人计算出稀薄和中等稀薄的气体颗粒流。等(2010)的两个方面。这些作者针对Euler-Lagrange和两流体仿真验证了他们的模型。在这项工作中,Passalacqua等人描述了完全耦合的基于正交的流体粒子代码。 He等人(2010年)将其用于模拟He等人描述的立管中的湍流气体颗粒流。 (2009),使用三维配置。此应用程序展示了根据实验预测气体颗粒流行为的基于正交矩的方法的预测能力和鲁棒性(He等,2009)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号