首页> 外文OA文献 >Mantle-derived magmas and magmatic Ni-Cu-(PGE) deposits
【2h】

Mantle-derived magmas and magmatic Ni-Cu-(PGE) deposits

机译:地幔源岩浆和岩浆镍铜(PGE)矿床

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Magmatic Fe-Ni-Cu ± platinum-group element (PGE) sulfide deposits form when mantle-derived mafic and ultramafic magmas become saturated in sulfide and segregate immiscible sulfide liquid, commonly following interaction with crustal rocks. Although the metal contents of primary magmas influence ore compositions, they do not control ore genesis because the metals partition strongly into the sulfide liquid and because most magmas capable of segregating sulfide liquid contain sufficient abundances of ore metals. More important controls are the temperature, viscosity, volatile content, and mode of emplacement of the magma, which control the dynamics of magma emplacement and the degree of interaction with crust. By this measure, high-temperature, low-viscosity komatiites and tholeiitic picrites are most capable of forming Ni-Cu-(PGE) deposits, whereas lower-temperature, volatile-rich alkali picrites and basalts have less potential. In most deposits, ore formation is linked directly to incorporation of S-rich country rocks and only indirectly to contamination by granitic crust. However, the geochemical signature of contamination is easily recognized and is a useful exploration guide because it identifies magmas that had the capacity to incorporate crustal material. Several aspects of the ore-forming process remain poorly understood, including the control of mantle melting processes on the PGE contents of mafic-ultramafic magmas, the mechanisms by which sulfur is transferred from wall rocks to ores (bulk assimilation, incongruent melting, and/or devolatilization), the distances and processes by which dense sulfide melts are transported from where they form to where they become concentrated (as finely-dispersed droplets, as segregated layers, or by deformation-driven injection of massive sulfide accumulations), and the dynamic processes that increase the metal contents of the ores.
机译:当源自地幔的铁镁质岩浆和超镁铁质岩浆在硫化物中饱和并隔离不混溶的硫化物液体时,通常形成岩浆状的Fe-Ni-Cu±铂族元素(PGE)硫化物矿床,通常是在与地壳岩石相互作用之后。尽管初级岩浆中的金属含量会影响矿石成分,但它们不能控制矿石的形成,因为金属会强烈地进入硫化物液体中,并且大多数能够分离硫化物液体的岩浆中都含有足够的矿石金属。更重要的控制因素是岩浆的温度,粘度,挥发物含量以及岩浆的沉积方式,它们控制岩浆沉积的动力学以及与地壳的相互作用程度。通过这种措施,高温,低粘度的康菲石和可塑的苦味粉最能形成Ni-Cu-(PGE)沉积物,而低温,富含挥发性的碱性苦味粉和玄武岩的潜力较小。在大多数矿床中,矿石的形成与富硫的乡村岩石的掺入直接相关,而仅与花岗岩地壳的污染间接相关。但是,污染的地球化学特征很容易识别,并且是有用的勘探指南,因为它可以识别具有整合地壳物质能力的岩浆。对成矿过程的几个方面仍然知之甚少,包括控制镁铁质-超镁铁质岩浆中PGE含量的地幔融化过程,硫从围岩转移到矿石的机制(大块同化,融化不均匀和/或脱挥发分),稠密的硫化物熔体从形成的地方转移到浓缩的地方的距离和过程(细分散的液滴,分离的层或通过变形驱动的大量硫化物积累的注入)以及动态增加矿石中金属含量的过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号