首页> 外文OA文献 >Estimating the Markov-Switching Almost Ideal Demand Systems: a Bayesian Approach
【2h】

Estimating the Markov-Switching Almost Ideal Demand Systems: a Bayesian Approach

机译:估计马尔可夫切换的几乎理想需求系统:贝叶斯方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Allais and Nich`ele (2007) proposed a Markov-switching almostideal demand system (MS-AIDS) model by extending the idea ofHamilton (1989). This model enables us to determine when the regimeshifts occurred and to estimate parameters characterized across thedifferent regimes. Moreover, degree of belongingness to each of theregimes and transitions between regimes are quantified by the probabilities.In this paper, we propose a Bayesian estimation for MSAIDSmodel and illustrate applicability of our proposed method. TheBayesian estimation has some important advantages. First, it enablesus to avoid the singularity problem suggested by Hamilton (1990,1991). Second, our proposed Bayesian estimation ensures that transitionprobabilities lie between zero and one. Third, Bayesian estimationis able to avoid the messy calculations entailed in the scorefunctions of log-likelihood. We then run a simulation study to confirmthe validity of the proposed method. In the empirical study onthe Japanese meat market, we found that our Bayesian estimationimproves the mean squared errors for all meat products over the maximumlikelihood estimation, while successfully capturing the regimeshifts of meat demand coinciding with the timing of Bovine SpongiformEncephalopathy (BSE) cases in Japan and U.S.
机译:Allais和Nich`ele(2007)通过扩展Hamilton(1989)的思想,提出了一个马尔可夫转换的几乎理想的需求系统(MS-AIDS)模型。该模型使我们能够确定何时发生制度转变,并估计跨不同制度表征的参数。此外,通过概率量化了对每个治疗区的归属程度和方案之间的转换。本文提出了一种针对MSAIDS模型的贝叶斯估计,并说明了该方法的适用性。贝叶斯估计具有一些重要的优点。首先,它使我们能够避免汉密尔顿(1990,1991)提出的奇点问题。其次,我们提出的贝叶斯估计可确保转移概率介于零和一之间。第三,贝叶斯估计能够避免对数似然的得分函数所带来的混乱计算。然后,我们进行仿真研究,以确认所提出方法的有效性。在日本肉类市场的实证研究中,我们发现贝叶斯估计在最大似然估计上提高了所有肉类产品的均方误差,同时成功地捕获了与日本和日本海绵状脑病(BSE)病例发生时间相吻合的肉类需求量变化。我们

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号