首页> 外文OA文献 >Ab initio calculation of H interactions with defects in fcc metals : crack tip dislocations and vacancies
【2h】

Ab initio calculation of H interactions with defects in fcc metals : crack tip dislocations and vacancies

机译:从头算计算fcc金属中H与缺陷的相互作用:裂纹尖端的位错和空位

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

In many technological applications of structured metallic alloys, hydrogen embrittlement (HE) is a major concern as it can penetrate in most metals, degrade their properties and lead to premature failures. Despite numerous efforts in the past decades during which many microscopic mechanisms were proposed, a clear understanding of H embrittlement mechanisms has not been achieved yet. Since HE processes occur on an atomic-scale, the exact mechanisms leading to HE are not easily identified experimentally. One possible improvement would be to use atomic-scale simulations to try to capture details of deformation and fracture processes at the atomic level, enabling the investigation of relevant microscopic mechanism. In such context, the goal of this PhD work is to understand and quantify H interactions with defects like vacancies, dislocations and cracks in fcc metals through multi-scale modeling. The study is organized in four main parts. In the first part, we employed first principle calculations (based on density functional theory) to describe H interaction with a vacancy in Nickel. More specifically, the segregation energies of multiple H atoms in a single and di-vacancies were computed. Two characteristic energies were found which clarify the experimental peaks observed in Thermal Desorption Spectra in the literature. The equilibrium concentrations of H-vacancy clusters was then evaluated, under conditions relevant to HE and stress corrosion cracking (SCC) of Ni based alloys (nuclear industry),by Monte Carlo simulations and a thermodynamic model developed from our DFT data. In the second part, we quantified the trapping effect of vacancies on H diffusion in Nickel. With DFT computed jump barriers, related to H trapping and detrapping in vacancies, we employed accelerated Kinetic Monte Carlo (KMC) simulations to evaluate the H diffusion coefficient as a function of vacancy concentration and temperature. In the third part, we studied the diffusion of H-vacancy clusters in Ni, based on the combination of DFT and a statistical method. DFT calculations of vacancy jump barriers were performed for clusters containing from one to six H inside the vacancy. With these computed barriers and previous calculated concentrations of H-vacancy clusters, a simple stochastic model similar to the KMC procedure was developed to estimate the diffusion coefficient of H-vacancy clusters as a function of H concentration and temperature. In the last part, we studied the interaction of hydrogen with a blunted crack tip in Aluminum by combined EAM (semi-empirical interatomic potential) and DFT calculations. Embedded atom method (EAM) potential simulations were performed to evaluate the H effect on dislocation emission from a blunted crack tip under mixed mode loading. This phenomenon can be understood by the H induced change of the unstable stacking fault energy (γus ) in Rice’s model. Therefore, DFT and EAM calculations of γus were performed including the effects of H and of the mixed mode loads. It is shown that the effect of the load perpendicular to the glide plane is very strong, contrary to the effect of sub-surface H, which is negligible
机译:在结构化金属合金的许多技术应用中,氢脆(HE)是一个主要问题,因为它会渗透到大多数金属中,降低其性能并导致过早失效。尽管在过去的几十年中进行了许多努力,提出了许多微观机理,但对H脆化机理还没有清楚的了解。由于HE过程是在原子尺度上发生的,因此无法轻易地通过实验确定导致HE的确切机制。一种可能的改进是使用原子级模拟来尝试捕获原子级别的变形和断裂过程的细节,从而能够研究相关的微观机制。在这种情况下,本博士研究的目标是通过多尺度建模来了解和量化H与杂质(如空位,位错和fcc金属中的裂纹)的相互作用。该研究分为四个主要部分。在第一部分中,我们使用第一原理计算(基于密度泛函理论)来描述镍中空位的H相互作用。更具体地,计算单个和双空位中的多个H原子的偏析能。发现了两个特征能量,这些能量澄清了文献中在热脱附谱中观察到的实验峰。然后,在与镍基合金(核工业)的HE和应力腐蚀开裂(SCC)相关的条件下,通过Monte Carlo模拟和根据我们的DFT数据开发的热力学模型,评估了H空位簇的平衡浓度。在第二部分中,我们量化了空位对镍中H扩散的俘获作用。利用DFT计算的跃迁势垒,与空位中的H陷阱和去陷阱相关,我们采用加速动力学蒙特卡洛(KMC)模拟来评估H扩散系数作为空位浓度和温度的函数。在第三部分中,我们结合DFT和统计方法研究了Ni中H-空位簇的扩散。对空位内含有1到6个H的簇进行了空位跳跃障碍的DFT计算。利用这些计算的势垒和先前计算的H-空位簇的浓度,开发了类似于KMC程序的简单随机模型,以估计H-空位簇的扩散系数作为H浓度和温度的函数。在最后一部分中,我们通过结合EAM(半经验原子间电势)和DFT计算研究了氢与铝中钝化裂纹尖端的相互作用。进行了嵌入式原子方法(EAM)势能模拟,以评估H对混合模式载荷下钝化裂纹尖端的位错发射的H效应。赖斯模型中H引起的不稳定堆垛层错能(γus)的变化可以理解这一现象。因此,进行了γus的DFT和EAM计算,包括H和混合模式载荷的影响。结果表明,垂直于滑行平面的载荷作用非常强,与次表面H的作用相反,后者可以忽略不计

著录项

  • 作者

    Wang Yu;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号