首页> 外文OA文献 >A Bayesian framework for the multifractal analysis of images using data augmentation and a Whittle approximation
【2h】

A Bayesian framework for the multifractal analysis of images using data augmentation and a Whittle approximation

机译:使用数据增强和Whittle逼近对图像进行多重分形的贝叶斯框架

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Texture analysis is an image processing task that can be conducted using the mathematical framework of multifractal analysis to study the regularity fluctuations of image intensity and the practical tools for their assessment, such as (wavelet) leaders. A recently introduced statistical model for leaders enables the Bayesian estimation of multifractal parameters. It significantly improves performance over standard (linear regression based) estimation. However, the computational cost induced by the associated nonstandard posterior distributions limits its application. The present work proposes an alternative Bayesian model for multifractal analysis that leads to more efficient algorithms. It relies on three original contributions: A novel generative model for the Fourier coefficients of log-leaders; an appropriate reparametrization for handling its inherent constraints; a data-augmented Bayesian model yielding standard conditional posterior distributions that can be sampled exactly. Numerical simulations using synthetic multifractal images demonstrate the excellent performance of the proposed algorithm, both in terms of estimation quality and computational cost.
机译:纹理分析是一种图像处理任务,可以使用多重分形分析的数学框架进行研究,以研究图像强度的规律性波动及其评估的实用工具,例如(小波)领导者。最近针对领导者引入的统计模型使得能够对多重分形参数进行贝叶斯估计。与标准(基于线性回归)估计相比,它显着提高了性能。但是,由相关的非标准后验分布引起的计算成本限制了其应用。本工作提出了一种用于多重分形分析的备选贝叶斯模型,从而产生了更有效的算法。它依靠三个原始的贡献:对数引线的傅里叶系数的新颖生成模型;进行适当的重新参数化处理其固有的约束;一个数据增强的贝叶斯模型,可以产生可以精确采样的标准条件后验分布。使用合成的多重分形图像进行数值模拟,无论是在估计质量还是在计算成本方面,都证明了所提出算法的出色性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号