首页> 外文OA文献 >Detection of 'Flavescence dorée' Grapevine Disease Using Unmanned Aerial Vehicle (UAV) Multispectral Imagery
【2h】

Detection of 'Flavescence dorée' Grapevine Disease Using Unmanned Aerial Vehicle (UAV) Multispectral Imagery

机译:使用无人机(UAV)多光谱成像技术检测“ Flavescencedorée”葡萄病

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Flavescence dorée is a grapevine disease affecting European vineyards which has severe economic consequences and containing its spread is therefore considered as a major challenge for viticulture. Flavescence dorée is subject to mandatory pest control including removal of the infectedudvines and, in this context, automatic detection of Flavescence dorée symptomatic vines by unmanned aerial vehicle (UAV) remote sensing could constitute a key diagnosis instrument for growers. The objective of this paper is to evaluate the feasibility of discriminating the Flavescence dorée symptoms in red and white cultivars from healthy vine vegetation using UAV multispectral imagery. Exhaustive ground truth data and UAV multispectral imagery (visible and near-infrared domain) have been acquired in September 2015 over four selected vineyards in Southwest France. Spectral signatures of healthy and symptomatic plants were studied with a set of 20 variables computed from the UAV images (spectral bands, vegetation indices and biophysical parameters) using univariate and multivariate classification approaches. Best results were achieved with red cultivars (both using univariate and multivariate approaches). For white cultivars, results were not satisfactory either for the univariate or the multivariate. Nevertheless, external accuracy assessment show that despite problems of Flavescence dorée and healthy pixel misclassification, an operational Flavescence dorée mapping technique using UAV-based imagery can still be proposed.
机译:黄花病是一种会影响欧洲葡萄园的葡萄病,对经济造成严重的经济影响,因此抑制其传播被认为是葡萄栽培的主要挑战。 Flavescencedorée受到强制性害虫控制,包括去除受感染的 udvines,在这种情况下,无人飞行器(UAV)遥感自动检测Flavescencedorée有症状葡萄藤可能是种植者的关键诊断工具。本文的目的是评估使用UAV多光谱成像技术从健康的藤本植物中区分红色和白色品种的Flavescencedorée症状的可行性。详尽的地面实况数据和无人机多光谱图像(可见光和近红外域)已于2015年9月从法国西南部的四个精选葡萄园中获得。使用单变量和多变量分类方法,利用从无人机图像(光谱带,植被指数和生物物理参数)计算出的20个变量对健康和有症状植物的光谱特征进行了研究。红色品种(使用单变量和多变量方法)均获得最佳结果。对于白色品种,单变量或多变量结果都不令人满意。尽管如此,外部准确性评估表明,尽管存在Flavescencedorée和健康像素分类错误的问题,仍然可以建议使用基于UAV的图像的可操作Flavescencedorée映射技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号