首页> 外文OA文献 >Unmixing multitemporal hyperspectral images accounting for endmember variability
【2h】

Unmixing multitemporal hyperspectral images accounting for endmember variability

机译:分解多时相高光谱图像,说明端成员变异性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper proposes an unsupervised Bayesian algorithm for unmixing successive hyperspectral images while accounting for temporal and spatial variability of the endmembers. Each image pixel is modeled as a linear combination of the end-members weighted by their corresponding abundances. Spatial endmember variability is introduced by considering the normal compositional model that assumes variable endmembers for each image pixel. A prior enforcing a smooth temporal variation of both endmembers and abundances is considered. The proposed algorithm estimates the mean vectors and covariance matrices of the endmembers and the abundances associated with each image. Since the estimators are difficult to express in closed form, we propose to sample according to the posterior distribution of interest and use the generated samples to build estimators. The performance of the proposed Bayesian model and the corresponding estimation algorithm is evaluated by comparison with other unmixing algorithms on synthetic images.
机译:本文提出了一种无监督贝叶斯算法,用于解耦连续的高光谱图像,同时考虑了末端成员的时空变异性。将每个图像像素建模为末端成员的线性组合,这些末端成员由其相应的丰度加权。通过考虑正常构图模型来引入空间端成员变异性,该模型假定每个图像像素的端成员都可变。可以考虑事先对端成员和丰度进行平稳的时间变化。所提出的算法估计端成员的平均向量和协方差矩阵以及与每个图像相关的丰度。由于估计量很难用封闭形式表示,因此我们建议根据感兴趣的后验分布进行采样,并使用生成的样本来构建估计量。通过与合成图像上的其他混合算法进行比较,评估了所提出的贝叶斯模型和相应的估计算法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号