首页> 外文OA文献 >Exploiting performance counters to predict and improve energy performance of HPC systems
【2h】

Exploiting performance counters to predict and improve energy performance of HPC systems

机译:利用性能计数器来预测和改善HPC系统的能源性能

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Hardware monitoring through performance counters is available on almost all modern processors. Although these counters are originally designed for performance tuning, they have also been used for evaluating power consumption. We propose two approaches for modelling and understanding the behaviour of high performance computing (HPC) systems relying on hardware monitoring counters. We evaluate the effectiveness of our system modelling approach considering both optimizing the energy usage of HPC systems and predicting HPC applications’ energy consumption as target objectives. Although hardware monitoring counters are used for modelling the system, other methods–including partial phase recognition and cross platform energy prediction–are used for energy optimization and prediction. Experimental results for energy prediction demonstrate that we can accurately predict the peak energy consumption of an application on a target platform; whereas, results for energy optimization indicate that with no a priori knowledge of workloads sharing the platform we can save up to 24% of the overall HPC system’s energy consumption under benchmarks and real-life workloads.
机译:几乎所有现代处理器都可以通过性能计数器进行硬件监视。尽管这些计数器最初是为性能调整而设计的,但它们也已用于评估功耗。我们提出了两种方法来建模和理解依赖于硬件监视计数器的高性能计算(HPC)系统的行为。我们在考虑优化HPC系统的能耗以及预测HPC应用程序的能耗为目标的同时,评估系统建模方法的有效性。尽管使用硬件监视计数器对系统进行建模,但其他方法(包括部分相位识别和跨平台能量预测)也用于能量优化和预测。能源预测的实验结果表明,我们可以准确地预测目标平台上应用程序的峰值能耗;而能源优化的结果表明,在没有先验知识的情况下共享平台,我们可以在基准和实际工作量下节省多达24%的HPC系统总体能耗。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号