首页> 外文OA文献 >A bayesian approach to adaptive detection in nonhomogeneous environments
【2h】

A bayesian approach to adaptive detection in nonhomogeneous environments

机译:非均匀环境中的贝叶斯自适应检测方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We consider the adaptive detection of a signal of interest embedded in colored noise, when the environment is nonhomogeneous, i.e., when the training samples used for adaptation do not share the same covariance matrix as the vector under test. A Bayesian framework is proposed where the covariance matrices of the primary and the secondary data are assumed to be random, with some appropriate joint distribution. The prior distributions of these matrices require a rough knowledge about the environment. This provides a flexible, yet simple, knowledge-aided model where the degree of nonhomogeneity can be tuned through some scalar variables. Within this framework, an approximate generalized likelihood ratio test is formulated. Accordingly, two Bayesian versions of the adaptive matched filter are presented, where the conventional maximum likelihood estimate of the primary data covariance matrix is replaced either by its minimum mean-square error estimate or by its maximum a posteriori estimate. Two detectors require generating samples distributed according to the joint posterior distribution of primary and secondary data covariance matrices. This is achieved through the use of a Gibbs sampling strategy. Numerical simulations illustrate the performances of these detectors, and compare them with those of the conventional adaptive matched filter.
机译:当环境不均匀时,即用于适应的训练样本与被测向量不共享相同的协方差矩阵时,我们考虑对嵌入有色噪声中的目标信号进行自适应检测。提出了一种贝叶斯框架,其中主要和次要数据的协方差矩阵被假定为随机的,并具有适当的联合分布。这些矩阵的先验分布需要对环境有一个大概的了解。这提供了一个灵活而又简单的知识辅助模型,其中可以通过一些标量变量来调整非均匀性程度。在此框架内,制定了近似的广义似然比检验。因此,提出了自适应匹配滤波器的两个贝叶斯版本,其中,主要数据协方差矩阵的常规最大似然估计被其最小均方误差估计或其最大后验估计所代替。两个检测器需要根据主要和次要数据协方差矩阵的联合后验分布来生成样本。这是通过使用Gibbs采样策略来实现的。数值模拟说明了这些检测器的性能,并将它们与常规自适应匹配滤波器的性能进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号